Merge pull request #1225 from ahocevar/closest-on-segment
squaredDistanceToSegment and footOfPerpendicularToSegment
This commit is contained in:
@@ -42,6 +42,45 @@ ol.coordinate.add = function(coordinate, delta) {
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Calculates the point closest to the passed coordinate on the passed segment.
|
||||
* This is the foot of the perpendicular of the coordinate to the segment when
|
||||
* the foot is on the segment, or the closest segment coordinate when the foot
|
||||
* is outside the segment.
|
||||
*
|
||||
* @param {ol.Coordinate} coordinate The coordinate.
|
||||
* @param {Array.<ol.Coordinate>} segment The two coordinates of the segment.
|
||||
* @return {ol.Coordinate} The foot of the perpendicular of the coordinate to
|
||||
* the segment.
|
||||
*/
|
||||
ol.coordinate.closestOnSegment = function(coordinate, segment) {
|
||||
var x0 = coordinate[0];
|
||||
var y0 = coordinate[1];
|
||||
var start = segment[0];
|
||||
var end = segment[1];
|
||||
var x1 = start[0];
|
||||
var y1 = start[1];
|
||||
var x2 = end[0];
|
||||
var y2 = end[1];
|
||||
var dx = x2 - x1;
|
||||
var dy = y2 - y1;
|
||||
var along = (dx == 0 && dy == 0) ? 0 :
|
||||
((dx * (x0 - x1)) + (dy * (y0 - y1))) / ((dx * dx + dy * dy) || 0);
|
||||
var x, y;
|
||||
if (along <= 0) {
|
||||
x = x1;
|
||||
y = y1;
|
||||
} else if (along >= 1) {
|
||||
x = x2;
|
||||
y = y2;
|
||||
} else {
|
||||
x = x1 + along * dx;
|
||||
y = y1 + along * dy;
|
||||
}
|
||||
return [x, y];
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* @param {number=} opt_fractionDigits The number of digits to include
|
||||
* after the decimal point. Default is `0`.
|
||||
@@ -136,6 +175,19 @@ ol.coordinate.squaredDistance = function(coord1, coord2) {
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Calculate the squared distance from a coordinate to a line segment.
|
||||
*
|
||||
* @param {ol.Coordinate} coordinate Coordinate of the point.
|
||||
* @param {Array.<ol.Coordinate>} segment Line segment (2 coordinates).
|
||||
* @return {number} Squared distance from the point to the line segment.
|
||||
*/
|
||||
ol.coordinate.squaredDistanceToSegment = function(coordinate, segment) {
|
||||
return ol.coordinate.squaredDistance(coordinate,
|
||||
ol.coordinate.closestOnSegment(coordinate, segment));
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* @param {ol.Coordinate|undefined} coordinate Coordinate.
|
||||
* @return {string} Hemisphere, degrees, minutes and seconds.
|
||||
|
||||
@@ -1,31 +0,0 @@
|
||||
goog.provide('ol.geom');
|
||||
|
||||
goog.require('ol.coordinate');
|
||||
|
||||
|
||||
/**
|
||||
* Calculate the squared distance from a point to a line segment.
|
||||
*
|
||||
* @param {ol.Coordinate} coordinate Coordinate of the point.
|
||||
* @param {Array.<ol.Coordinate>} segment Line segment (2 coordinates).
|
||||
* @return {number} Squared distance from the point to the line segment.
|
||||
*/
|
||||
ol.geom.squaredDistanceToSegment = function(coordinate, segment) {
|
||||
// http://de.softuses.com/103478, Kommentar #1
|
||||
var v = segment[0];
|
||||
var w = segment[1];
|
||||
var l2 = ol.coordinate.squaredDistance(v, w);
|
||||
if (l2 === 0) {
|
||||
return ol.coordinate.squaredDistance(coordinate, v);
|
||||
}
|
||||
var t = ((coordinate[0] - v[0]) * (w[0] - v[0]) +
|
||||
(coordinate[1] - v[1]) * (w[1] - v[1])) / l2;
|
||||
if (t < 0) {
|
||||
return ol.coordinate.squaredDistance(coordinate, v);
|
||||
}
|
||||
if (t > 1) {
|
||||
return ol.coordinate.squaredDistance(coordinate, w);
|
||||
}
|
||||
return ol.coordinate.squaredDistance(coordinate,
|
||||
[v[0] + t * (w[0] - v[0]), v[1] + t * (w[1] - v[1])]);
|
||||
};
|
||||
@@ -3,8 +3,8 @@ goog.provide('ol.geom.LineString');
|
||||
goog.require('goog.asserts');
|
||||
goog.require('goog.events.EventType');
|
||||
goog.require('ol.CoordinateArray');
|
||||
goog.require('ol.coordinate');
|
||||
goog.require('ol.extent');
|
||||
goog.require('ol.geom');
|
||||
goog.require('ol.geom.Geometry');
|
||||
goog.require('ol.geom.GeometryEvent');
|
||||
goog.require('ol.geom.GeometryType');
|
||||
@@ -104,7 +104,7 @@ ol.geom.LineString.prototype.distanceFromCoordinate = function(coordinate) {
|
||||
var coordinates = this.getCoordinates();
|
||||
var dist2 = Infinity;
|
||||
for (var i = 0, j = 1, len = coordinates.length; j < len; i = j++) {
|
||||
dist2 = Math.min(dist2, ol.geom.squaredDistanceToSegment(coordinate,
|
||||
dist2 = Math.min(dist2, ol.coordinate.squaredDistanceToSegment(coordinate,
|
||||
[coordinates[i], coordinates[j]]));
|
||||
}
|
||||
return Math.sqrt(dist2);
|
||||
|
||||
42
test/spec/ol/coordinate.test.js
Normal file
42
test/spec/ol/coordinate.test.js
Normal file
@@ -0,0 +1,42 @@
|
||||
goog.provide('ol.test.coordinate');
|
||||
|
||||
describe.only('ol.coordinate', function() {
|
||||
|
||||
describe('#closestOnSegment', function() {
|
||||
it('can handle points where the foot of the perpendicular is closest',
|
||||
function() {
|
||||
var point = [2, 5];
|
||||
var segment = [[-5, 0], [10, 0]];
|
||||
expect(ol.coordinate.closestOnSegment(point, segment))
|
||||
.to.eql([2, 0]);
|
||||
});
|
||||
it('can handle points where the foot of the perpendicular is not closest',
|
||||
function() {
|
||||
var point = [0, -6];
|
||||
var segment = [[-5, 0], [0, -1]];
|
||||
expect(ol.coordinate.closestOnSegment(point, segment))
|
||||
.to.eql([0, -1]);
|
||||
});
|
||||
});
|
||||
|
||||
describe('#squaredDistanceToSegment', function() {
|
||||
it('can handle points where the foot of the perpendicular is closest',
|
||||
function() {
|
||||
var point = [2, 5];
|
||||
var segment = [[-5, 0], [10, 0]];
|
||||
expect(ol.coordinate.squaredDistanceToSegment(point, segment))
|
||||
.to.eql(25);
|
||||
});
|
||||
it('can handle points where the foot of the perpendicular is not closest',
|
||||
function() {
|
||||
var point = [0, -6];
|
||||
var segment = [[-5, 0], [0, -1]];
|
||||
expect(ol.coordinate.squaredDistanceToSegment(point, segment))
|
||||
.to.eql(25);
|
||||
});
|
||||
|
||||
});
|
||||
|
||||
});
|
||||
|
||||
goog.require('ol.coordinate');
|
||||
Reference in New Issue
Block a user