Merge pull request #1325 from ahocevar/remove-rtree

Replace RTree with RBush and remove RTree
This commit is contained in:
ahocevar
2013-11-28 08:58:04 -08:00
4 changed files with 21 additions and 803 deletions

View File

@@ -14,7 +14,7 @@ goog.require('ol.FeatureEventType');
goog.require('ol.extent');
goog.require('ol.proj');
goog.require('ol.source.Source');
goog.require('ol.structs.RTree');
goog.require('ol.structs.RBush');
/**
@@ -251,10 +251,10 @@ ol.source.Vector.prototype.handleFeatureChange_ = function(evt) {
extents.push(evt.oldExtent);
}
var geometry = feature.getGeometry();
var extent = geometry.getBounds();
if (!goog.isNull(geometry)) {
this.featureCache_.remove(feature, evt.oldExtent);
this.featureCache_.add(feature);
extents.push(geometry.getBounds());
this.featureCache_.updateExtent(feature, extent);
extents.push(extent);
}
this.dispatchEvent(new ol.source.VectorEvent(ol.source.VectorEventType.CHANGE,
[feature], extents));
@@ -353,10 +353,10 @@ ol.source.FeatureCache = function() {
this.idLookup_;
/**
* @type {ol.structs.RTree}
* @type {ol.structs.RBush}
* @private
*/
this.rTree_;
this.rBush_;
this.clear();
@@ -368,7 +368,7 @@ ol.source.FeatureCache = function() {
*/
ol.source.FeatureCache.prototype.clear = function() {
this.idLookup_ = {};
this.rTree_ = new ol.structs.RTree();
this.rBush_ = new ol.structs.RBush();
};
@@ -384,7 +384,7 @@ ol.source.FeatureCache.prototype.add = function(feature) {
// index by bounding box
if (!goog.isNull(geometry)) {
this.rTree_.insert(geometry.getBounds(), feature);
this.rBush_.insert(geometry.getBounds(), feature);
}
};
@@ -409,7 +409,7 @@ ol.source.FeatureCache.prototype.getFeaturesObject = function() {
*/
ol.source.FeatureCache.prototype.forEach =
function(extent, callback, opt_thisArg) {
this.rTree_.forEach(
this.rBush_.forEachInExtent(
extent, /** @type {function(Object)} */ (callback), opt_thisArg);
};
@@ -417,17 +417,24 @@ ol.source.FeatureCache.prototype.forEach =
/**
* Remove a feature from the cache.
* @param {ol.Feature} feature Feature.
* @param {ol.Extent=} opt_extent Optional extent (used when the current feature
* extent is different than the one in the index).
*/
ol.source.FeatureCache.prototype.remove = function(feature, opt_extent) {
ol.source.FeatureCache.prototype.remove = function(feature) {
var id = goog.getUid(feature).toString(),
geometry = feature.getGeometry();
delete this.idLookup_[id];
// index by bounding box
if (!goog.isNull(geometry)) {
var extent = goog.isDef(opt_extent) ? opt_extent : geometry.getBounds();
this.rTree_.remove(extent, feature);
this.rBush_.remove(feature);
}
};
/**
* Updates a feature's extent in the spatial index.
* @param {ol.Feature} feature Feature.
* @param {ol.Extent} extent Extent.
*/
ol.source.FeatureCache.prototype.updateExtent = function(feature, extent) {
this.rBush_.update(extent, feature);
};

View File

@@ -1,638 +0,0 @@
// rtree.js - General-Purpose Non-Recursive Javascript R-Tree Library
// Version 0.6.2, December 5st 2009
//
// Copyright (c) 2009 Jon-Carlos Rivera
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to
// the following conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//
// Jon-Carlos Rivera - imbcmdth@hotmail.com
goog.provide('ol.structs.RTree');
goog.require('goog.array');
goog.require('ol.extent');
/**
* @typedef {{extent: ol.Extent,
* leaf: (Object|undefined),
* nodes: (Array.<ol.structs.RTreeNode>|undefined),
* target: (Object|undefined),
* type: (string|number|undefined)}}
*/
ol.structs.RTreeNode;
/**
* @constructor
* @param {number=} opt_maxWidth Width before a node is split. Default is `6`.
*/
ol.structs.RTree = function(opt_maxWidth) {
/**
* Maximum width of any node before a split.
* @private
* @type {number}
*/
this.maxWidth_ = goog.isDef(opt_maxWidth) ? opt_maxWidth : 6;
/**
* Minimum width of any node before a merge.
* @private
* @type {number}
*/
this.minWidth_ = Math.floor(this.maxWidth_ / 2);
/**
* Start with an empty root-tree.
* @private
* @type {ol.structs.RTreeNode}
*/
this.rootTree_ = /** @type {ol.structs.RTreeNode} */
({extent: ol.extent.createEmpty(), nodes: []});
};
/**
* @param {ol.structs.RTreeNode} node Node.
* @private
*/
ol.structs.RTree.recalculateExtent_ = function(node) {
var n = node.nodes.length;
var extent = node.extent;
if (n === 0) {
ol.extent.empty(extent);
} else {
var firstNodeExtent = node.nodes[0].extent;
extent[0] = firstNodeExtent[0];
extent[2] = firstNodeExtent[2];
extent[1] = firstNodeExtent[1];
extent[3] = firstNodeExtent[3];
var i;
for (i = 1; i < n; ++i) {
ol.extent.extend(extent, node.nodes[i].extent);
}
}
};
/**
* This is Jon-Carlos Rivera's special addition to the world of r-trees.
* Every other (simple) method he found produced poor trees.
* This skews insertions to prefering squarer and emptier nodes.
*
* @param {number} l L.
* @param {number} w W.
* @param {number} fill Fill.
* @private
* @return {number} Squarified ratio.
*/
ol.structs.RTree.squarifiedRatio_ = function(l, w, fill) {
// Area of new enlarged rectangle
var peri = (l + w) / 2; // Average size of a side of the new rectangle
var area = l * w; // Area of new rectangle
// return the ratio of the perimeter to the area - the closer to 1 we are,
// the more "square" a rectangle is. conversly, when approaching zero the
// more elongated a rectangle is
var geo = area / (peri * peri);
return area * fill / geo;
};
/**
* Choose the best for rectangle to be inserted into.
*
* @param {ol.structs.RTreeNode} rect Rectangle.
* @param {ol.structs.RTreeNode} root Root to start search.
* @private
* @return {Array} Leaf node parent.
*/
ol.structs.RTree.prototype.chooseLeafSubtree_ = function(rect, root) {
var bestChoiceIndex = -1;
var bestChoiceStack = [];
var bestChoiceArea;
bestChoiceStack.push(root);
var nodes = root.nodes;
do {
if (bestChoiceIndex != -1) {
bestChoiceStack.push(nodes[bestChoiceIndex]);
nodes = nodes[bestChoiceIndex].nodes;
bestChoiceIndex = -1;
}
for (var i = nodes.length - 1; i >= 0; --i) {
var lTree = nodes[i];
if (goog.isDef(lTree.leaf)) {
// Bail out of everything and start inserting
bestChoiceIndex = -1;
break;
}
// Area of new enlarged rectangle
var oldLRatio = ol.structs.RTree.squarifiedRatio_(
lTree.extent[2] - lTree.extent[0],
lTree.extent[3] - lTree.extent[1],
lTree.nodes.length + 1);
// Enlarge rectangle to fit new rectangle
var nw = (lTree.extent[2] > rect.extent[2] ?
lTree.extent[2] : rect.extent[2]) -
(lTree.extent[0] < rect.extent[0] ?
lTree.extent[0] : rect.extent[0]);
var nh = (lTree.extent[3] > rect.extent[3] ?
lTree.extent[3] : rect.extent[3]) -
(lTree.extent[1] < rect.extent[1] ?
lTree.extent[1] : rect.extent[1]);
// Area of new enlarged rectangle
var lRatio = ol.structs.RTree.squarifiedRatio_(
nw, nh, lTree.nodes.length + 2);
if (bestChoiceIndex < 0 ||
Math.abs(lRatio - oldLRatio) < bestChoiceArea) {
bestChoiceArea = Math.abs(lRatio - oldLRatio);
bestChoiceIndex = i;
}
}
} while (bestChoiceIndex != -1);
return bestChoiceStack;
};
/**
* Non-recursive insert function.
*
* @param {ol.Extent} extent Extent.
* @param {Object} obj Object to insert.
* @param {string|number=} opt_type Optional type to store along with the
* object.
*/
ol.structs.RTree.prototype.insert = function(extent, obj, opt_type) {
var node = /** @type {ol.structs.RTreeNode} */
({extent: extent, leaf: obj});
if (goog.isDef(opt_type)) {
node.type = opt_type;
}
this.insertSubtree_(node, this.rootTree_);
};
/**
* Non-recursive internal insert function.
*
* @param {ol.structs.RTreeNode} node Node to insert.
* @param {ol.structs.RTreeNode} root Root to begin insertion at.
* @private
*/
ol.structs.RTree.prototype.insertSubtree_ = function(node, root) {
var bc; // Best Current node
// Initial insertion is special because we resize the Tree and we don't
// care about any overflow (seriously, how can the first object overflow?)
if (root.nodes.length === 0) {
root.extent = ol.extent.clone(node.extent);
root.nodes.push(node);
return;
}
// Find the best fitting leaf node
// chooseLeaf returns an array of all tree levels (including root)
// that were traversed while trying to find the leaf
var treeStack = this.chooseLeafSubtree_(node, root);
var workingObject = node;
// Walk back up the tree resizing and inserting as needed
do {
//handle the case of an empty node (from a split)
if (bc && goog.isDef(bc.nodes) && bc.nodes.length === 0) {
var pbc = bc; // Past bc
bc = treeStack.pop();
for (var t = 0, tt = bc.nodes.length; t < tt; ++t) {
if (bc.nodes[t] === pbc || bc.nodes[t].nodes.length === 0) {
bc.nodes.splice(t, 1);
break;
}
}
} else {
bc = treeStack.pop();
}
// If there is data attached to this workingObject
var isArray = goog.isArray(workingObject);
if (goog.isDef(workingObject.leaf) ||
goog.isDef(workingObject.nodes) || isArray) {
// Do Insert
if (isArray) {
for (var ai = 0, aii = workingObject.length; ai < aii; ++ai) {
ol.extent.extend(bc.extent, workingObject[ai].extent);
}
bc.nodes = bc.nodes.concat(workingObject);
} else {
ol.extent.extend(bc.extent, workingObject.extent);
bc.nodes.push(workingObject); // Do Insert
}
if (bc.nodes.length <= this.maxWidth_) { // Start Resizeing Up the Tree
workingObject = {extent: ol.extent.clone(bc.extent)};
} else { // Otherwise Split this Node
// linearSplit_() returns an array containing two new nodes
// formed from the split of the previous node's overflow
var a = this.linearSplit_(bc.nodes);
workingObject = a;//[1];
if (treeStack.length < 1) { // If are splitting the root..
bc.nodes.push(a[0]);
treeStack.push(bc); // Reconsider the root element
workingObject = a[1];
}
}
} else { // Otherwise Do Resize
//Just keep applying the new bounding rectangle to the parents..
ol.extent.extend(bc.extent, workingObject.extent);
workingObject = ({extent: ol.extent.clone(bc.extent)});
}
} while (treeStack.length > 0);
};
/**
* Split a set of nodes into two roughly equally-filled nodes.
*
* @param {Array.<ol.structs.RTreeNode>} nodes Array of nodes.
* @private
* @return {Array.<ol.structs.RTreeNode>} An array of two nodes.
*/
ol.structs.RTree.prototype.linearSplit_ = function(nodes) {
var n = this.pickLinear_(nodes);
while (nodes.length > 0) {
this.pickNext_(nodes, n[0], n[1]);
}
return n;
};
/**
* Pick the "best" two starter nodes to use as seeds using the "linear"
* criteria.
*
* @param {Array.<ol.structs.RTreeNode>} nodes Array of source nodes.
* @private
* @return {Array.<ol.structs.RTreeNode>} An array of two nodes.
*/
ol.structs.RTree.prototype.pickLinear_ = function(nodes) {
var lowestHighX = nodes.length - 1;
var highestLowX = 0;
var lowestHighY = nodes.length - 1;
var highestLowY = 0;
var t1, t2;
for (var i = nodes.length - 2; i >= 0; --i) {
var l = nodes[i];
if (l.extent[0] > nodes[highestLowX].extent[0]) {
highestLowX = i;
} else if (l.extent[2] < nodes[lowestHighX].extent[1]) {
lowestHighX = i;
}
if (l.extent[1] > nodes[highestLowY].extent[1]) {
highestLowY = i;
} else if (l.extent[3] < nodes[lowestHighY].extent[3]) {
lowestHighY = i;
}
}
var dx = Math.abs(nodes[lowestHighX].extent[2] -
nodes[highestLowX].extent[0]);
var dy = Math.abs(nodes[lowestHighY].extent[3] -
nodes[highestLowY].extent[1]);
if (dx > dy) {
if (lowestHighX > highestLowX) {
t1 = nodes.splice(lowestHighX, 1)[0];
t2 = nodes.splice(highestLowX, 1)[0];
} else {
t2 = nodes.splice(highestLowX, 1)[0];
t1 = nodes.splice(lowestHighX, 1)[0];
}
} else {
if (lowestHighY > highestLowY) {
t1 = nodes.splice(lowestHighY, 1)[0];
t2 = nodes.splice(highestLowY, 1)[0];
} else {
t2 = nodes.splice(highestLowY, 1)[0];
t1 = nodes.splice(lowestHighY, 1)[0];
}
}
return [
/** @type {ol.structs.RTreeNode} */
({extent: ol.extent.clone(t1.extent), nodes: [t1]}),
/** @type {ol.structs.RTreeNode} */
({extent: ol.extent.clone(t2.extent), nodes: [t2]})
];
};
/**
* Insert the best source rectangle into the best fitting parent node: a or b.
*
* @param {Array.<ol.structs.RTreeNode>} nodes Source node array.
* @param {ol.structs.RTreeNode} a Target node array a.
* @param {ol.structs.RTreeNode} b Target node array b.
* @private
*/
ol.structs.RTree.prototype.pickNext_ = function(nodes, a, b) {
// Area of new enlarged rectangle
var areaA = ol.structs.RTree.squarifiedRatio_(a.extent[2] - a.extent[0],
a.extent[3] - a.extent[1], a.nodes.length + 1);
var areaB = ol.structs.RTree.squarifiedRatio_(b.extent[2] - b.extent[0],
b.extent[3] - b.extent[1], b.nodes.length + 1);
var highAreaDelta;
var highAreaNode;
var lowestGrowthGroup;
for (var i = nodes.length - 1; i >= 0; --i) {
var l = nodes[i];
var newAreaA = [
a.extent[0] < l.extent[0] ? a.extent[0] : l.extent[0],
a.extent[2] > l.extent[2] ? a.extent[2] : l.extent[2],
a.extent[1] < l.extent[1] ? a.extent[1] : l.extent[1],
a.extent[3] > l.extent[3] ? a.extent[3] : l.extent[3]
];
var changeNewAreaA = Math.abs(ol.structs.RTree.squarifiedRatio_(
newAreaA[1] - newAreaA[0],
newAreaA[3] - newAreaA[2], a.nodes.length + 2) - areaA);
var newAreaB = [
b.extent[0] < l.extent[0] ? b.extent[0] : l.extent[0],
b.extent[2] > l.extent[2] ? b.extent[2] : l.extent[2],
b.extent[1] < l.extent[1] ? b.extent[1] : l.extent[1],
b.extent[3] > l.extent[3] ? b.extent[3] : l.extent[3]
];
var changeNewAreaB = Math.abs(ol.structs.RTree.squarifiedRatio_(
newAreaB[1] - newAreaB[0], newAreaB[3] - newAreaB[2],
b.nodes.length + 2) - areaB);
var changeNewAreaDelta = Math.abs(changeNewAreaB - changeNewAreaA);
if (!highAreaNode || !highAreaDelta ||
changeNewAreaDelta < highAreaDelta) {
highAreaNode = i;
highAreaDelta = changeNewAreaDelta;
lowestGrowthGroup = changeNewAreaB < changeNewAreaA ? b : a;
}
}
var tempNode = nodes.splice(highAreaNode, 1)[0];
if (a.nodes.length + nodes.length + 1 <= this.minWidth_) {
a.nodes.push(tempNode);
ol.extent.extend(a.extent, tempNode.extent);
} else if (b.nodes.length + nodes.length + 1 <= this.minWidth_) {
b.nodes.push(tempNode);
ol.extent.extend(b.extent, tempNode.extent);
}
else {
lowestGrowthGroup.nodes.push(tempNode);
ol.extent.extend(lowestGrowthGroup.extent, tempNode.extent);
}
};
/**
* Non-recursive function that deletes a specific region.
*
* @param {ol.Extent} extent Extent.
* @param {Object=} opt_obj Object.
* @return {Array} Result.
* @this {ol.structs.RTree}
*/
ol.structs.RTree.prototype.remove = function(extent, opt_obj) {
arguments[0] = /** @type {ol.structs.RTreeNode} */ ({extent: extent});
switch (arguments.length) {
case 1:
arguments[1] = false; // opt_obj == false for conditionals
case 2:
arguments[2] = this.rootTree_; // Add root node to end of argument list
default:
arguments.length = 3;
}
if (arguments[1] === false) { // Do area-wide †
var numberDeleted = 0;
var result = [];
do {
numberDeleted = result.length;
result = result.concat(this.removeSubtree_.apply(this, arguments));
} while (numberDeleted != result.length);
return result;
} else { // Delete a specific item
return this.removeSubtree_.apply(this, arguments);
}
};
/**
* Find the best specific node(s) for object to be deleted from.
*
* @param {ol.structs.RTreeNode} rect Rectangle.
* @param {Object} obj Object.
* @param {ol.structs.RTreeNode} root Root to start search.
* @private
* @return {Array} Leaf node parent.
*/
ol.structs.RTree.prototype.removeSubtree_ = function(rect, obj, root) {
var hitStack = []; // Contains the elements that overlap
var countStack = []; // Contains the elements that overlap
var returnArray = [];
var currentDepth = 1;
if (!rect || !ol.extent.intersects(rect.extent, root.extent)) {
return returnArray;
}
/** @type {ol.structs.RTreeNode} */
var workingObject = /** @type {ol.structs.RTreeNode} */
({extent: ol.extent.clone(rect.extent), target: obj});
countStack.push(root.nodes.length);
hitStack.push(root);
do {
var tree = hitStack.pop();
var i = countStack.pop() - 1;
if (goog.isDef(workingObject.target)) {
// We are searching for a target
while (i >= 0) {
var lTree = tree.nodes[i];
if (ol.extent.intersects(workingObject.extent, lTree.extent)) {
if ((workingObject.target && goog.isDef(lTree.leaf) &&
lTree.leaf === workingObject.target) ||
(!workingObject.target && (goog.isDef(lTree.leaf) ||
ol.extent.containsExtent(workingObject.extent, lTree.extent))))
{ // A Match !!
// Yup we found a match...
// we can cancel search and start walking up the list
if (goog.isDef(lTree.nodes)) {
// If we are deleting a node not a leaf...
returnArray = this.searchSubtree_(lTree, true, [], lTree);
tree.nodes.splice(i, 1);
} else {
returnArray = tree.nodes.splice(i, 1);
}
// Resize MBR down...
ol.structs.RTree.recalculateExtent_(tree);
workingObject.target = undefined;
if (tree.nodes.length < this.minWidth_) { // Underflow
workingObject.nodes = this.searchSubtree_(tree, true, [], tree);
}
break;
} else if (goog.isDef(lTree.nodes)) {
// Not a Leaf
currentDepth += 1;
countStack.push(i);
hitStack.push(tree);
tree = lTree;
i = lTree.nodes.length;
}
}
i -= 1;
}
} else if (goog.isDef(workingObject.nodes)) {
// We are unsplitting
tree.nodes.splice(i + 1, 1); // Remove unsplit node
// workingObject.nodes contains a list of elements removed from the
// tree so far
if (tree.nodes.length > 0) {
ol.structs.RTree.recalculateExtent_(tree);
}
for (var t = 0, tt = workingObject.nodes.length; t < tt; ++t) {
this.insertSubtree_(workingObject.nodes[t], tree);
}
workingObject.nodes.length = 0;
if (hitStack.length === 0 && tree.nodes.length <= 1) {
// Underflow..on root!
this.searchSubtree_(tree, true, workingObject.nodes, tree);
tree.nodes.length = 0;
hitStack.push(tree);
countStack.push(1);
} else if (hitStack.length > 0 && tree.nodes.length < this.minWidth_) {
// Underflow..AGAIN!
this.searchSubtree_(tree, true, workingObject.nodes, tree);
tree.nodes.length = 0;
} else {
workingObject.nodes = undefined; // Just start resizing
}
} else { // we are just resizing
ol.structs.RTree.recalculateExtent_(tree);
}
currentDepth -= 1;
} while (hitStack.length > 0);
return returnArray;
};
/**
* Non-recursive search function
*
* @param {ol.Extent} extent Extent.
* @param {string|number=} opt_type Optional type of the objects we want to
* find.
* @return {Array} Result.
* @this {ol.structs.RTree}
*/
ol.structs.RTree.prototype.search = function(extent, opt_type) {
var rect = /** @type {ol.structs.RTreeNode} */ ({extent: extent});
return this.searchSubtree_(rect, false, [], this.rootTree_, opt_type);
};
/**
* Search in the given extent and call the callback with each result.
*
* @param {ol.Extent} extent Extent to search.
* @param {function(this: T, Object)} callback Callback called with each result.
* @param {T=} opt_thisArg The object to be used as the value of 'this' for
* the callback.
* @this {ol.structs.RTree}
* @template T
*/
ol.structs.RTree.prototype.forEach = function(extent, callback, opt_thisArg) {
var rect = /** @type {ol.structs.RTreeNode} */ ({extent: extent});
this.searchSubtree_(
rect, false, [], this.rootTree_, undefined, callback, opt_thisArg);
};
/**
* Non-recursive internal search function
*
* @param {ol.structs.RTreeNode} rect Rectangle.
* @param {boolean} returnNode Do we return nodes?
* @param {Array} result Result.
* @param {ol.structs.RTreeNode} root Root.
* @param {string|number=} opt_type Optional type to search for.
* @param {function(this: T, Object)=} opt_callback Callback called with each
* result.
* @param {T=} opt_thisArg The object to be used as the value of 'this' for
* the callback.
* @private
* @template T
* @return {Array} Result.
*/
ol.structs.RTree.prototype.searchSubtree_ = function(
rect, returnNode, result, root, opt_type, opt_callback, opt_thisArg) {
var hitStack = []; // Contains the elements that overlap
if (!ol.extent.intersects(rect.extent, root.extent)) {
return result;
}
hitStack.push(root.nodes);
do {
var nodes = hitStack.pop();
for (var i = nodes.length - 1; i >= 0; --i) {
var lTree = nodes[i];
if (ol.extent.intersects(rect.extent, lTree.extent)) {
if (goog.isDef(lTree.nodes)) { // Not a Leaf
hitStack.push(lTree.nodes);
} else if (goog.isDef(lTree.leaf)) { // A Leaf !!
if (!returnNode) {
// TODO keep track of type on all nodes so we don't have to
// walk all the way in to the leaf to know that we don't need it
if (!goog.isDef(opt_type) || lTree.type == opt_type) {
var obj = lTree.leaf;
if (goog.isDef(opt_callback)) {
opt_callback.call(opt_thisArg, obj);
} else {
result.push(obj);
}
}
} else {
result.push(lTree);
}
}
}
}
} while (hitStack.length > 0);
return result;
};

View File

@@ -1,151 +0,0 @@
goog.provide('ol.test.structs.RTree');
describe('ol.structs.RTree', function() {
var rTree = new ol.structs.RTree();
describe('creation', function() {
it('can insert 1k objects', function() {
var i = 1000;
while (i > 0) {
var min = [Math.random() * 10000, Math.random() * 10000];
var max = [min[0] + Math.random() * 500, min[1] + Math.random() * 500];
var bounds = [min[0], min[1], max[0], max[1]];
rTree.insert(bounds, 'JUST A TEST OBJECT!_' + i);
i--;
}
expect(goog.object.getCount(rTree.search([0, 0, 10600, 10600])))
.to.be(1000);
});
it('can insert 1k more objects', function() {
var i = 1000;
while (i > 0) {
var min = [Math.random() * 10000, Math.random() * 10000];
var max = [min[0] + Math.random() * 500, min[1] + Math.random() * 500];
var bounds = [min[0], min[1], max[0], max[1]];
rTree.insert(bounds, 'JUST A TEST OBJECT!_' + i);
i--;
}
expect(goog.object.getCount(rTree.search([0, 0, 10600, 10600])))
.to.be(2000);
});
});
describe('search', function() {
it('can perform 1k out-of-bounds searches', function() {
var i = 1000;
var len = 0;
while (i > 0) {
var min = [-(Math.random() * 10000 + 501),
-(Math.random() * 10000 + 501)];
var max = [min[0] + Math.random() * 500, min[1] + Math.random() * 500];
var bounds = [min[0], min[1], max[0], max[1]];
len += rTree.search(bounds).length;
i--;
}
expect(len).to.be(0);
});
it('can perform 1k in-bounds searches', function() {
var i = 1000;
var len = 0;
while (i > 0) {
var min = [Math.random() * 10000, Math.random() * 10000];
var max = [min[0] + Math.random() * 500, min[1] + Math.random() * 500];
var bounds = [min[0], min[1], max[0], max[1]];
len += rTree.search(bounds).length;
i--;
}
expect(len).not.to.be(0);
});
});
describe('deletion', function() {
var len = 0;
it('can delete half the RTree', function() {
var bounds = [5000, 0, 10500, 10500];
len += rTree.remove(bounds).length;
expect(len).to.not.be(0);
});
it('can delete the other half of the RTree', function() {
var bounds = [0, 0, 5000, 10500];
len += rTree.remove(bounds).length;
expect(len).to.be(2000);
});
});
describe('result plausibility and structure', function() {
it('filters by rectangle', function() {
rTree.insert([0, 0, 1, 1], 1);
rTree.insert([1, 1, 4, 4], 2);
rTree.insert([2, 2, 3, 3], 3);
rTree.insert([-5, -5, -4, -4], 4);
rTree.insert([-4, -4, -1, -1], 5);
rTree.insert([-3, -3, -2, -2], 6);
var result;
result = goog.object.getValues(rTree.search([2, 2, 3, 3]));
expect(result).to.contain(2);
expect(result).to.contain(3);
expect(result.length).to.be(2);
result = goog.object.getValues(rTree.search([-1, -1, 2, 2]));
expect(result).to.contain(1);
expect(result).to.contain(2);
expect(result).to.contain(3);
expect(result).to.contain(5);
expect(result.length).to.be(4);
expect(goog.object.getCount(rTree.search([5, 5, 6, 6]))).to.be(0);
});
it('filters by type', function() {
rTree.insert([2, 2, 3, 3], 7, 'type1');
var result;
result = rTree.search([1, 2, 4, 4], 'type1');
expect(result).to.contain(7);
expect(result.length).to.be(1);
result = rTree.search([1, 2, 4, 4]);
expect(result.length).to.be(3);
});
});
describe('#forEach()', function() {
var tree;
beforeEach(function() {
tree = new ol.structs.RTree();
});
it('calls a callback for each result in the search extent', function() {
var one = {};
tree.insert([4.5, 4.5, 5, 5], one);
var two = {};
tree.insert([5, 5, 5.5, 5.5], two);
var callback = sinon.spy();
tree.forEach([4, 4, 6, 6], callback);
expect(callback.callCount).to.be(2);
expect(callback.calledWith(one)).to.be(true);
expect(callback.calledWith(two)).to.be(true);
});
it('accepts a this argument', function() {
var obj = {};
tree.insert([5, 5, 5, 5], obj);
var callback = sinon.spy();
var thisArg = {};
tree.forEach([4, 4, 6, 6], callback, thisArg);
expect(callback.callCount).to.be(1);
expect(callback.calledWith(obj)).to.be(true);
expect(callback.calledOn(thisArg)).to.be(true);
});
});
});
goog.require('goog.object');
goog.require('ol.structs.RTree');