604 lines
18 KiB
JavaScript
604 lines
18 KiB
JavaScript
/**
|
|
* Copyright 2000, Silicon Graphics, Inc. All Rights Reserved.
|
|
* Copyright 2012, Google Inc. All Rights Reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to
|
|
* deal in the Software without restriction, including without limitation the
|
|
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
|
* sell copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice including the dates of first publication and
|
|
* either this permission notice or a reference to http://oss.sgi.com/projects/FreeB/
|
|
* shall be included in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* SILICON GRAPHICS, INC. BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
|
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
|
|
* IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
* Original Code. The Original Code is: OpenGL Sample Implementation,
|
|
* Version 1.2.1, released January 26, 2000, developed by Silicon Graphics,
|
|
* Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc.
|
|
* Copyright in any portions created by third parties is as indicated
|
|
* elsewhere herein. All Rights Reserved.
|
|
*/
|
|
|
|
/**
|
|
* @author ericv@cs.stanford.edu (Eric Veach)
|
|
* @author bckenny@google.com (Brendan Kenny)
|
|
*/
|
|
|
|
// require libtess
|
|
// require libtess.CachedVertex
|
|
// require libtess.GluTesselator
|
|
// require libtess.GluFace
|
|
// require libtess.GluHalfEdge
|
|
// require libtess.GluMesh
|
|
/*global libtess */
|
|
|
|
goog.provide('libtess.render');
|
|
goog.require('libtess');
|
|
goog.require('libtess.FaceCount');
|
|
|
|
// TODO(bckenny): most of these doc strings are probably more internal comments
|
|
|
|
|
|
/**
|
|
* [SIGN_INCONSISTENT_ description]
|
|
* @type {number}
|
|
* @private
|
|
* @const
|
|
*/
|
|
libtess.render.SIGN_INCONSISTENT_ = 2;
|
|
|
|
|
|
/**
|
|
* render.renderMesh(tess, mesh) takes a mesh and breaks it into triangle
|
|
* fans, strips, and separate triangles. A substantial effort is made
|
|
* to use as few rendering primitives as possible (i.e. to make the fans
|
|
* and strips as large as possible).
|
|
*
|
|
* The rendering output is provided as callbacks (see the api).
|
|
*
|
|
* @param {libtess.GluTesselator} tess [description].
|
|
* @param {libtess.GluMesh} mesh [description].
|
|
*/
|
|
libtess.render.renderMesh = function(tess, mesh) {
|
|
// Make a list of separate triangles so we can render them all at once
|
|
tess.lonelyTriList = null;
|
|
|
|
var f;
|
|
for (f = mesh.fHead.next; f !== mesh.fHead; f = f.next) {
|
|
f.marked = false;
|
|
}
|
|
for (f = mesh.fHead.next; f !== mesh.fHead; f = f.next) {
|
|
// We examine all faces in an arbitrary order. Whenever we find
|
|
// an unprocessed face F, we output a group of faces including F
|
|
// whose size is maximum.
|
|
if (f.inside && ! f.marked) {
|
|
libtess.render.renderMaximumFaceGroup_(tess, f);
|
|
libtess.assert(f.marked);
|
|
}
|
|
}
|
|
if (tess.lonelyTriList !== null) {
|
|
libtess.render.renderLonelyTriangles_(tess, tess.lonelyTriList);
|
|
tess.lonelyTriList = null;
|
|
}
|
|
};
|
|
|
|
|
|
/**
|
|
* render.renderBoundary(tess, mesh) takes a mesh, and outputs one
|
|
* contour for each face marked "inside". The rendering output is
|
|
* provided as callbacks (see the api).
|
|
*
|
|
* @param {libtess.GluTesselator} tess [description].
|
|
* @param {libtess.GluMesh} mesh [description].
|
|
*/
|
|
libtess.render.renderBoundary = function(tess, mesh) {
|
|
for (var f = mesh.fHead.next; f !== mesh.fHead; f = f.next) {
|
|
if (f.inside) {
|
|
tess.callBeginOrBeginData(libtess.primitiveType.GL_LINE_LOOP);
|
|
|
|
var e = f.anEdge;
|
|
do {
|
|
tess.callVertexOrVertexData(e.org.data);
|
|
e = e.lNext;
|
|
} while (e !== f.anEdge);
|
|
|
|
tess.callEndOrEndData();
|
|
}
|
|
}
|
|
};
|
|
|
|
|
|
/**
|
|
* render.renderCache(tess) takes a single contour and tries to render it
|
|
* as a triangle fan. This handles convex polygons, as well as some
|
|
* non-convex polygons if we get lucky.
|
|
*
|
|
* Returns true if the polygon was successfully rendered. The rendering
|
|
* output is provided as callbacks (see the api).
|
|
*
|
|
* @param {libtess.GluTesselator} tess [description].
|
|
* @return {boolean} [description].
|
|
*/
|
|
libtess.render.renderCache = function(tess) {
|
|
if (tess.cacheCount < 3) {
|
|
// degenerate contour -- no output
|
|
return true;
|
|
}
|
|
|
|
// TODO(bckenny): better init?
|
|
var norm = [0, 0, 0];
|
|
norm[0] = tess.normal[0];
|
|
norm[1] = tess.normal[1];
|
|
norm[2] = tess.normal[2];
|
|
if (norm[0] === 0 && norm[1] === 0 && norm[2] === 0) {
|
|
libtess.render.computeNormal_(tess, norm, false);
|
|
}
|
|
|
|
var sign = libtess.render.computeNormal_(tess, norm, true);
|
|
if (sign === libtess.render.SIGN_INCONSISTENT_) {
|
|
// fan triangles did not have a consistent orientation
|
|
return false;
|
|
}
|
|
if (sign === 0) {
|
|
// all triangles were degenerate
|
|
return true;
|
|
}
|
|
|
|
// make sure we do the right thing for each winding rule
|
|
switch (tess.windingRule) {
|
|
case libtess.windingRule.GLU_TESS_WINDING_ODD:
|
|
case libtess.windingRule.GLU_TESS_WINDING_NONZERO:
|
|
break;
|
|
case libtess.windingRule.GLU_TESS_WINDING_POSITIVE:
|
|
if (sign < 0) {
|
|
return true;
|
|
}
|
|
break;
|
|
case libtess.windingRule.GLU_TESS_WINDING_NEGATIVE:
|
|
if (sign > 0) {
|
|
return true;
|
|
}
|
|
break;
|
|
case libtess.windingRule.GLU_TESS_WINDING_ABS_GEQ_TWO:
|
|
return true;
|
|
}
|
|
|
|
tess.callBeginOrBeginData(tess.boundaryOnly ?
|
|
libtess.primitiveType.GL_LINE_LOOP : (tess.cacheCount > 3) ?
|
|
libtess.primitiveType.GL_TRIANGLE_FAN : libtess.primitiveType.GL_TRIANGLES);
|
|
|
|
// indexes into tess.cache to replace pointers
|
|
// TODO(bckenny): refactor to be more straightforward
|
|
var v0 = 0;
|
|
var vn = v0 + tess.cacheCount;
|
|
var vc;
|
|
|
|
tess.callVertexOrVertexData(tess.cache[v0].data);
|
|
if (sign > 0) {
|
|
for (vc = v0 + 1; vc < vn; ++vc) {
|
|
tess.callVertexOrVertexData(tess.cache[vc].data);
|
|
}
|
|
} else {
|
|
for (vc = vn - 1; vc > v0; --vc) {
|
|
tess.callVertexOrVertexData(tess.cache[vc].data);
|
|
}
|
|
}
|
|
tess.callEndOrEndData();
|
|
return true;
|
|
};
|
|
|
|
|
|
/**
|
|
* Returns true if face has been marked temporarily.
|
|
* @private
|
|
* @param {libtess.GluFace} f [description].
|
|
* @return {boolean} [description].
|
|
*/
|
|
libtess.render.marked_ = function(f) {
|
|
// NOTE(bckenny): originally macro
|
|
return (!f.inside || f.marked);
|
|
};
|
|
|
|
|
|
/**
|
|
* [freeTrail description]
|
|
* @private
|
|
* @param {libtess.GluFace} t [description].
|
|
*/
|
|
libtess.render.freeTrail_ = function(t) {
|
|
// NOTE(bckenny): originally macro
|
|
while (t !== null) {
|
|
t.marked = false;
|
|
t = t.trail;
|
|
}
|
|
};
|
|
|
|
|
|
/**
|
|
* eOrig.lFace is the face we want to render. We want to find the size
|
|
* of a maximal fan around eOrig.org. To do this we just walk around
|
|
* the origin vertex as far as possible in both directions.
|
|
* @private
|
|
* @param {libtess.GluHalfEdge} eOrig [description].
|
|
* @return {libtess.FaceCount} [description].
|
|
*/
|
|
libtess.render.maximumFan_ = function(eOrig) {
|
|
// TODO(bckenny): probably have dest FaceCount passed in (see renderMaximumFaceGroup)
|
|
var newFace = new libtess.FaceCount(0, null, libtess.render.renderFan_);
|
|
|
|
var trail = null;
|
|
var e;
|
|
|
|
for (e = eOrig; !libtess.render.marked_(e.lFace); e = e.oNext) {
|
|
// NOTE(bckenny): AddToTrail(e.lFace, trail) macro
|
|
e.lFace.trail = trail;
|
|
trail = e.lFace;
|
|
e.lFace.marked = true;
|
|
|
|
++newFace.size;
|
|
}
|
|
for (e = eOrig; !libtess.render.marked_(e.rFace()); e = e.oPrev()) {
|
|
// NOTE(bckenny): AddToTrail(e.rFace(), trail) macro
|
|
e.rFace().trail = trail;
|
|
trail = e.rFace();
|
|
e.rFace().marked = true;
|
|
|
|
++newFace.size;
|
|
}
|
|
newFace.eStart = e;
|
|
|
|
libtess.render.freeTrail_(trail);
|
|
return newFace;
|
|
};
|
|
|
|
|
|
/**
|
|
* Here we are looking for a maximal strip that contains the vertices
|
|
* eOrig.org, eOrig.dst(), eOrig.lNext.dst() (in that order or the
|
|
* reverse, such that all triangles are oriented CCW).
|
|
*
|
|
* Again we walk forward and backward as far as possible. However for
|
|
* strips there is a twist: to get CCW orientations, there must be
|
|
* an *even* number of triangles in the strip on one side of eOrig.
|
|
* We walk the strip starting on a side with an even number of triangles;
|
|
* if both side have an odd number, we are forced to shorten one side.
|
|
* @private
|
|
* @param {libtess.GluHalfEdge} eOrig [description].
|
|
* @return {libtess.FaceCount} [description].
|
|
*/
|
|
libtess.render.maximumStrip_ = function(eOrig) {
|
|
// TODO(bckenny): probably have dest FaceCount passed in (see renderMaximumFaceGroup)
|
|
var newFace = new libtess.FaceCount(0, null, libtess.render.renderStrip_);
|
|
|
|
var headSize = 0;
|
|
var tailSize = 0;
|
|
|
|
var trail = null;
|
|
|
|
var e;
|
|
var eTail;
|
|
var eHead;
|
|
|
|
for (e = eOrig; !libtess.render.marked_(e.lFace); ++tailSize, e = e.oNext) {
|
|
// NOTE(bckenny): AddToTrail(e.lFace, trail) macro
|
|
e.lFace.trail = trail;
|
|
trail = e.lFace;
|
|
e.lFace.marked = true;
|
|
|
|
++tailSize;
|
|
e = e.dPrev();
|
|
if (libtess.render.marked_(e.lFace)) {
|
|
break;
|
|
}
|
|
// NOTE(bckenny): AddToTrail(e.lFace, trail) macro
|
|
e.lFace.trail = trail;
|
|
trail = e.lFace;
|
|
e.lFace.marked = true;
|
|
}
|
|
eTail = e;
|
|
|
|
for (e = eOrig; !libtess.render.marked_(e.rFace()); ++headSize, e = e.dNext()) {
|
|
// NOTE(bckenny): AddToTrail(e.rFace(), trail) macro
|
|
e.rFace().trail = trail;
|
|
trail = e.rFace();
|
|
e.rFace().marked = true;
|
|
|
|
++headSize;
|
|
e = e.oPrev();
|
|
if (libtess.render.marked_(e.rFace())) {
|
|
break;
|
|
}
|
|
// NOTE(bckenny): AddToTrail(e.rFace(), trail) macro
|
|
e.rFace().trail = trail;
|
|
trail = e.rFace();
|
|
e.rFace().marked = true;
|
|
}
|
|
eHead = e;
|
|
|
|
newFace.size = tailSize + headSize;
|
|
if ((tailSize & 1) === 0) { // isEven
|
|
newFace.eStart = eTail.sym;
|
|
|
|
} else if ((headSize & 1) === 0) { // isEven
|
|
newFace.eStart = eHead;
|
|
|
|
} else {
|
|
// Both sides have odd length, we must shorten one of them. In fact,
|
|
// we must start from eHead to guarantee inclusion of eOrig.lFace.
|
|
--newFace.size;
|
|
newFace.eStart = eHead.oNext;
|
|
}
|
|
|
|
libtess.render.freeTrail_(trail);
|
|
return newFace;
|
|
};
|
|
|
|
|
|
/**
|
|
* Render as many CCW triangles as possible in a fan starting from
|
|
* edge "e". The fan *should* contain exactly "size" triangles
|
|
* (otherwise we've goofed up somewhere).
|
|
* @private
|
|
* @param {libtess.GluTesselator} tess [description].
|
|
* @param {libtess.GluHalfEdge} e [description].
|
|
* @param {number} size [description].
|
|
*/
|
|
libtess.render.renderFan_ = function(tess, e, size) {
|
|
tess.callBeginOrBeginData(libtess.primitiveType.GL_TRIANGLE_FAN);
|
|
tess.callVertexOrVertexData(e.org.data);
|
|
tess.callVertexOrVertexData(e.dst().data);
|
|
|
|
while (!libtess.render.marked_(e.lFace)) {
|
|
e.lFace.marked = true;
|
|
--size;
|
|
e = e.oNext;
|
|
tess.callVertexOrVertexData(e.dst().data);
|
|
}
|
|
|
|
libtess.assert(size === 0);
|
|
tess.callEndOrEndData();
|
|
};
|
|
|
|
|
|
/**
|
|
* Render as many CCW triangles as possible in a strip starting from
|
|
* edge e. The strip *should* contain exactly "size" triangles
|
|
* (otherwise we've goofed up somewhere).
|
|
* @private
|
|
* @param {libtess.GluTesselator} tess [description].
|
|
* @param {libtess.GluHalfEdge} e [description].
|
|
* @param {number} size [description].
|
|
*/
|
|
libtess.render.renderStrip_ = function(tess, e, size) {
|
|
tess.callBeginOrBeginData(libtess.primitiveType.GL_TRIANGLE_STRIP);
|
|
tess.callVertexOrVertexData(e.org.data);
|
|
tess.callVertexOrVertexData(e.dst().data);
|
|
|
|
while (!libtess.render.marked_(e.lFace)) {
|
|
e.lFace.marked = true;
|
|
--size;
|
|
e = e.dPrev();
|
|
tess.callVertexOrVertexData(e.org.data);
|
|
if (libtess.render.marked_(e.lFace)) {
|
|
break;
|
|
}
|
|
|
|
e.lFace.marked = true;
|
|
--size;
|
|
e = e.oNext;
|
|
tess.callVertexOrVertexData(e.dst().data);
|
|
}
|
|
|
|
libtess.assert(size === 0);
|
|
tess.callEndOrEndData();
|
|
};
|
|
|
|
|
|
/**
|
|
* Just add the triangle to a triangle list, so we can render all
|
|
* the separate triangles at once.
|
|
* @private
|
|
* @param {libtess.GluTesselator} tess [description].
|
|
* @param {libtess.GluHalfEdge} e [description].
|
|
* @param {number} size [description].
|
|
*/
|
|
libtess.render.renderTriangle_ = function(tess, e, size) {
|
|
libtess.assert(size === 1);
|
|
// NOTE(bckenny): AddToTrail(e.lFace, tess.lonelyTriList) macro
|
|
e.lFace.trail = tess.lonelyTriList;
|
|
tess.lonelyTriList = e.lFace;
|
|
e.lFace.marked = true;
|
|
};
|
|
|
|
|
|
/**
|
|
* We want to find the largest triangle fan or strip of unmarked faces
|
|
* which includes the given face fOrig. There are 3 possible fans
|
|
* passing through fOrig (one centered at each vertex), and 3 possible
|
|
* strips (one for each CCW permutation of the vertices). Our strategy
|
|
* is to try all of these, and take the primitive which uses the most
|
|
* triangles (a greedy approach).
|
|
* @private
|
|
* @param {libtess.GluTesselator} tess [description].
|
|
* @param {libtess.GluFace} fOrig [description].
|
|
*/
|
|
libtess.render.renderMaximumFaceGroup_ = function(tess, fOrig) {
|
|
var e = fOrig.anEdge;
|
|
|
|
// TODO(bckenny): see faceCount comments from below. should probably create
|
|
// two here and pass one in and compare against the other to find max
|
|
// maybe doesnt matter since so short lived
|
|
var max = new libtess.FaceCount(1, e, libtess.render.renderTriangle_);
|
|
|
|
var newFace;
|
|
if (!tess.flagBoundary) {
|
|
newFace = libtess.render.maximumFan_(e);
|
|
if (newFace.size > max.size) {
|
|
max = newFace;
|
|
}
|
|
newFace = libtess.render.maximumFan_(e.lNext);
|
|
if (newFace.size > max.size) {
|
|
max = newFace;
|
|
}
|
|
newFace = libtess.render.maximumFan_(e.lPrev());
|
|
if (newFace.size > max.size) {
|
|
max = newFace;
|
|
}
|
|
|
|
newFace = libtess.render.maximumStrip_(e);
|
|
if (newFace.size > max.size) {
|
|
max = newFace;
|
|
}
|
|
newFace = libtess.render.maximumStrip_(e.lNext);
|
|
if (newFace.size > max.size) {
|
|
max = newFace;
|
|
}
|
|
newFace = libtess.render.maximumStrip_(e.lPrev());
|
|
if (newFace.size > max.size) {
|
|
max = newFace;
|
|
}
|
|
}
|
|
|
|
max.render(tess, max.eStart, max.size);
|
|
};
|
|
|
|
|
|
/**
|
|
* Now we render all the separate triangles which could not be
|
|
* grouped into a triangle fan or strip.
|
|
* @private
|
|
* @param {libtess.GluTesselator} tess [description].
|
|
* @param {libtess.GluFace} head [description].
|
|
*/
|
|
libtess.render.renderLonelyTriangles_ = function(tess, head) {
|
|
// TODO(bckenny): edgeState needs to be boolean, but != on first call
|
|
// force edge state output for first vertex
|
|
var edgeState = -1;
|
|
|
|
var f = head;
|
|
|
|
tess.callBeginOrBeginData(libtess.primitiveType.GL_TRIANGLES);
|
|
|
|
for (; f !== null; f = f.trail) {
|
|
// Loop once for each edge (there will always be 3 edges)
|
|
var e = f.anEdge;
|
|
do {
|
|
if (tess.flagBoundary) {
|
|
// Set the "edge state" to true just before we output the
|
|
// first vertex of each edge on the polygon boundary.
|
|
var newState = !e.rFace().inside ? 1 : 0; // TODO(bckenny): total hack to get edgeState working. fix me.
|
|
if (edgeState !== newState) {
|
|
edgeState = newState;
|
|
// TODO(bckenny): edgeState should be boolean now
|
|
tess.callEdgeFlagOrEdgeFlagData(!!edgeState);
|
|
}
|
|
}
|
|
tess.callVertexOrVertexData(e.org.data);
|
|
|
|
e = e.lNext;
|
|
} while (e !== f.anEdge);
|
|
}
|
|
|
|
tess.callEndOrEndData();
|
|
};
|
|
|
|
|
|
/**
|
|
* If check==false, we compute the polygon normal and place it in norm[].
|
|
* If check==true, we check that each triangle in the fan from v0 has a
|
|
* consistent orientation with respect to norm[]. If triangles are
|
|
* consistently oriented CCW, return 1; if CW, return -1; if all triangles
|
|
* are degenerate return 0; otherwise (no consistent orientation) return
|
|
* render.SIGN_INCONSISTENT_.
|
|
* @private
|
|
* @param {libtess.GluTesselator} tess [description].
|
|
* @param {Array.<number>} norm [description].
|
|
* @param {boolean} check [description].
|
|
* @return {number} int.
|
|
*/
|
|
libtess.render.computeNormal_ = function(tess, norm, check) {
|
|
/* Find the polygon normal. It is important to get a reasonable
|
|
* normal even when the polygon is self-intersecting (eg. a bowtie).
|
|
* Otherwise, the computed normal could be very tiny, but perpendicular
|
|
* to the true plane of the polygon due to numerical noise. Then all
|
|
* the triangles would appear to be degenerate and we would incorrectly
|
|
* decompose the polygon as a fan (or simply not render it at all).
|
|
*
|
|
* We use a sum-of-triangles normal algorithm rather than the more
|
|
* efficient sum-of-trapezoids method (used in checkOrientation()
|
|
* in normal.js). This lets us explicitly reverse the signed area
|
|
* of some triangles to get a reasonable normal in the self-intersecting
|
|
* case.
|
|
*/
|
|
if (!check) {
|
|
norm[0] = norm[1] = norm[2] = 0;
|
|
}
|
|
|
|
// indexes into tess.cache to replace pointers
|
|
// TODO(bckenny): refactor to be more straightforward
|
|
var v0 = 0;
|
|
var vn = v0 + tess.cacheCount;
|
|
var vc = v0 + 1;
|
|
var vert0 = tess.cache[v0];
|
|
var vertc = tess.cache[vc];
|
|
|
|
var xc = vertc.coords[0] - vert0.coords[0];
|
|
var yc = vertc.coords[1] - vert0.coords[1];
|
|
var zc = vertc.coords[2] - vert0.coords[2];
|
|
|
|
var sign = 0;
|
|
while (++vc < vn) {
|
|
vertc = tess.cache[vc];
|
|
var xp = xc;
|
|
var yp = yc;
|
|
var zp = zc;
|
|
xc = vertc.coords[0] - vert0.coords[0];
|
|
yc = vertc.coords[1] - vert0.coords[1];
|
|
zc = vertc.coords[2] - vert0.coords[2];
|
|
|
|
// Compute (vp - v0) cross (vc - v0)
|
|
var n = [0, 0, 0]; // TODO(bckenny): better init?
|
|
n[0] = yp * zc - zp * yc;
|
|
n[1] = zp * xc - xp * zc;
|
|
n[2] = xp * yc - yp * xc;
|
|
|
|
var dot = n[0] * norm[0] + n[1] * norm[1] + n[2] * norm[2];
|
|
if (!check) {
|
|
// Reverse the contribution of back-facing triangles to get
|
|
// a reasonable normal for self-intersecting polygons (see above)
|
|
if (dot >= 0) {
|
|
norm[0] += n[0];
|
|
norm[1] += n[1];
|
|
norm[2] += n[2];
|
|
} else {
|
|
norm[0] -= n[0];
|
|
norm[1] -= n[1];
|
|
norm[2] -= n[2];
|
|
}
|
|
} else if (dot !== 0) {
|
|
// Check the new orientation for consistency with previous triangles
|
|
if (dot > 0) {
|
|
if (sign < 0) {
|
|
return libtess.render.SIGN_INCONSISTENT_;
|
|
}
|
|
sign = 1;
|
|
} else {
|
|
if (sign > 0) {
|
|
return libtess.render.SIGN_INCONSISTENT_;
|
|
}
|
|
sign = -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
return sign;
|
|
};
|