641 lines
20 KiB
JavaScript
641 lines
20 KiB
JavaScript
// rtree.js - General-Purpose Non-Recursive Javascript R-Tree Library
|
|
// Version 0.6.2, December 5st 2009
|
|
//
|
|
// Copyright (c) 2009 Jon-Carlos Rivera
|
|
//
|
|
// Permission is hereby granted, free of charge, to any person obtaining
|
|
// a copy of this software and associated documentation files (the
|
|
// "Software"), to deal in the Software without restriction, including
|
|
// without limitation the rights to use, copy, modify, merge, publish,
|
|
// distribute, sublicense, and/or sell copies of the Software, and to
|
|
// permit persons to whom the Software is furnished to do so, subject to
|
|
// the following conditions:
|
|
//
|
|
// The above copyright notice and this permission notice shall be
|
|
// included in all copies or substantial portions of the Software.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
|
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
|
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
|
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
//
|
|
// Jon-Carlos Rivera - imbcmdth@hotmail.com
|
|
|
|
|
|
goog.provide('ol.structs.RTree');
|
|
|
|
goog.require('goog.array');
|
|
goog.require('ol.extent');
|
|
|
|
|
|
/**
|
|
* @typedef {{extent: ol.Extent,
|
|
* leaf: (Object|undefined),
|
|
* nodes: (Array.<ol.structs.RTreeNode>|undefined),
|
|
* target: (Object|undefined),
|
|
* type: (string|undefined)}}
|
|
*/
|
|
ol.structs.RTreeNode;
|
|
|
|
|
|
|
|
/**
|
|
* @constructor
|
|
* @param {number=} opt_maxWidth Width before a node is split. Default is 6.
|
|
*/
|
|
ol.structs.RTree = function(opt_maxWidth) {
|
|
|
|
/**
|
|
* Maximum width of any node before a split.
|
|
* @private
|
|
* @type {number}
|
|
*/
|
|
this.maxWidth_ = goog.isDef(opt_maxWidth) ? opt_maxWidth : 6;
|
|
|
|
/**
|
|
* Minimum width of any node before a merge.
|
|
* @private
|
|
* @type {number}
|
|
*/
|
|
this.minWidth_ = Math.floor(this.maxWidth_ / 2);
|
|
|
|
/**
|
|
* Start with an empty root-tree.
|
|
* @private
|
|
* @type {ol.structs.RTreeNode}
|
|
*/
|
|
this.rootTree_ = /** @type {ol.structs.RTreeNode} */
|
|
({extent: ol.extent.createEmpty(), nodes: []});
|
|
|
|
};
|
|
|
|
|
|
/**
|
|
* @param {ol.structs.RTreeNode} node Node.
|
|
* @private
|
|
*/
|
|
ol.structs.RTree.recalculateExtent_ = function(node) {
|
|
var n = node.nodes.length;
|
|
var extent = node.extent;
|
|
if (n === 0) {
|
|
ol.extent.empty(extent);
|
|
} else {
|
|
var firstNodeExtent = node.nodes[0].extent;
|
|
extent[0] = firstNodeExtent[0];
|
|
extent[1] = firstNodeExtent[1];
|
|
extent[2] = firstNodeExtent[2];
|
|
extent[3] = firstNodeExtent[3];
|
|
var i;
|
|
for (i = 1; i < n; ++i) {
|
|
ol.extent.extend(extent, node.nodes[i].extent);
|
|
}
|
|
}
|
|
};
|
|
|
|
|
|
/**
|
|
* This is Jon-Carlos Rivera's special addition to the world of r-trees.
|
|
* Every other (simple) method he found produced poor trees.
|
|
* This skews insertions to prefering squarer and emptier nodes.
|
|
*
|
|
* @param {number} l L.
|
|
* @param {number} w W.
|
|
* @param {number} fill Fill.
|
|
* @private
|
|
* @return {number} Squarified ratio.
|
|
*/
|
|
ol.structs.RTree.squarifiedRatio_ = function(l, w, fill) {
|
|
// Area of new enlarged rectangle
|
|
var peri = (l + w) / 2; // Average size of a side of the new rectangle
|
|
var area = l * w; // Area of new rectangle
|
|
// return the ratio of the perimeter to the area - the closer to 1 we are,
|
|
// the more "square" a rectangle is. conversly, when approaching zero the
|
|
// more elongated a rectangle is
|
|
var geo = area / (peri * peri);
|
|
return area * fill / geo;
|
|
};
|
|
|
|
|
|
/**
|
|
* Choose the best for rectangle to be inserted into.
|
|
*
|
|
* @param {ol.structs.RTreeNode} rect Rectangle.
|
|
* @param {ol.structs.RTreeNode} root Root to start search.
|
|
* @private
|
|
* @return {Array} Leaf node parent.
|
|
*/
|
|
ol.structs.RTree.prototype.chooseLeafSubtree_ = function(rect, root) {
|
|
var bestChoiceIndex = -1;
|
|
var bestChoiceStack = [];
|
|
var bestChoiceArea;
|
|
|
|
bestChoiceStack.push(root);
|
|
var nodes = root.nodes;
|
|
|
|
do {
|
|
if (bestChoiceIndex != -1) {
|
|
bestChoiceStack.push(nodes[bestChoiceIndex]);
|
|
nodes = nodes[bestChoiceIndex].nodes;
|
|
bestChoiceIndex = -1;
|
|
}
|
|
|
|
for (var i = nodes.length - 1; i >= 0; --i) {
|
|
var lTree = nodes[i];
|
|
if (goog.isDef(lTree.leaf)) {
|
|
// Bail out of everything and start inserting
|
|
bestChoiceIndex = -1;
|
|
break;
|
|
}
|
|
// Area of new enlarged rectangle
|
|
var oldLRatio = ol.structs.RTree.squarifiedRatio_(
|
|
lTree.extent[1] - lTree.extent[0],
|
|
lTree.extent[3] - lTree.extent[2],
|
|
lTree.nodes.length + 1);
|
|
|
|
// Enlarge rectangle to fit new rectangle
|
|
var nw = (lTree.extent[1] > rect.extent[1] ?
|
|
lTree.extent[1] : rect.extent[1]) -
|
|
(lTree.extent[0] < rect.extent[0] ?
|
|
lTree.extent[0] : rect.extent[0]);
|
|
var nh = (lTree.extent[3] > rect.extent[3] ?
|
|
lTree.extent[3] : rect.extent[3]) -
|
|
(lTree.extent[2] < rect.extent[2] ?
|
|
lTree.extent[2] : rect.extent[2]);
|
|
|
|
// Area of new enlarged rectangle
|
|
var lRatio = ol.structs.RTree.squarifiedRatio_(
|
|
nw, nh, lTree.nodes.length + 2);
|
|
|
|
if (bestChoiceIndex < 0 ||
|
|
Math.abs(lRatio - oldLRatio) < bestChoiceArea) {
|
|
bestChoiceArea = Math.abs(lRatio - oldLRatio);
|
|
bestChoiceIndex = i;
|
|
}
|
|
}
|
|
} while (bestChoiceIndex != -1);
|
|
|
|
return bestChoiceStack;
|
|
};
|
|
|
|
|
|
/**
|
|
* Non-recursive insert function.
|
|
*
|
|
* @param {ol.Extent} extent Extent.
|
|
* @param {Object} obj Object to insert.
|
|
* @param {string=} opt_type Optional type to store along with the object.
|
|
*/
|
|
ol.structs.RTree.prototype.insert = function(extent, obj, opt_type) {
|
|
var node = /** @type {ol.structs.RTreeNode} */
|
|
({extent: extent, leaf: obj});
|
|
if (goog.isDef(opt_type)) {
|
|
node.type = opt_type;
|
|
}
|
|
this.insertSubtree_(node, this.rootTree_);
|
|
};
|
|
|
|
|
|
/**
|
|
* Non-recursive internal insert function.
|
|
*
|
|
* @param {ol.structs.RTreeNode} node Node to insert.
|
|
* @param {ol.structs.RTreeNode} root Root to begin insertion at.
|
|
* @private
|
|
*/
|
|
ol.structs.RTree.prototype.insertSubtree_ = function(node, root) {
|
|
var bc; // Best Current node
|
|
// Initial insertion is special because we resize the Tree and we don't
|
|
// care about any overflow (seriously, how can the first object overflow?)
|
|
if (root.nodes.length === 0) {
|
|
root.extent = node.extent.concat();
|
|
root.nodes.push(node);
|
|
return;
|
|
}
|
|
|
|
// Find the best fitting leaf node
|
|
// chooseLeaf returns an array of all tree levels (including root)
|
|
// that were traversed while trying to find the leaf
|
|
var treeStack = this.chooseLeafSubtree_(node, root);
|
|
var workingObject = node;
|
|
|
|
// Walk back up the tree resizing and inserting as needed
|
|
do {
|
|
//handle the case of an empty node (from a split)
|
|
if (bc && goog.isDef(bc.nodes) && bc.nodes.length === 0) {
|
|
var pbc = bc; // Past bc
|
|
bc = treeStack.pop();
|
|
for (var t = 0, tt = bc.nodes.length; t < tt; ++t) {
|
|
if (bc.nodes[t] === pbc || bc.nodes[t].nodes.length === 0) {
|
|
bc.nodes.splice(t, 1);
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
bc = treeStack.pop();
|
|
}
|
|
|
|
// If there is data attached to this workingObject
|
|
var isArray = goog.isArray(workingObject);
|
|
if (goog.isDef(workingObject.leaf) ||
|
|
goog.isDef(workingObject.nodes) || isArray) {
|
|
// Do Insert
|
|
if (isArray) {
|
|
for (var ai = 0, aii = workingObject.length; ai < aii; ++ai) {
|
|
ol.extent.extend(bc.extent, workingObject[ai].extent);
|
|
}
|
|
bc.nodes = bc.nodes.concat(workingObject);
|
|
} else {
|
|
ol.extent.extend(bc.extent, workingObject.extent);
|
|
bc.nodes.push(workingObject); // Do Insert
|
|
}
|
|
|
|
if (bc.nodes.length <= this.maxWidth_) { // Start Resizeing Up the Tree
|
|
workingObject = {extent: bc.extent.concat()};
|
|
} else { // Otherwise Split this Node
|
|
// linearSplit_() returns an array containing two new nodes
|
|
// formed from the split of the previous node's overflow
|
|
var a = this.linearSplit_(bc.nodes);
|
|
workingObject = a;//[1];
|
|
|
|
if (treeStack.length < 1) { // If are splitting the root..
|
|
bc.nodes.push(a[0]);
|
|
treeStack.push(bc); // Reconsider the root element
|
|
workingObject = a[1];
|
|
}
|
|
}
|
|
} else { // Otherwise Do Resize
|
|
//Just keep applying the new bounding rectangle to the parents..
|
|
ol.extent.extend(bc.extent, workingObject.extent);
|
|
workingObject = ({extent: bc.extent.concat()});
|
|
}
|
|
} while (treeStack.length > 0);
|
|
};
|
|
|
|
|
|
/**
|
|
* Split a set of nodes into two roughly equally-filled nodes.
|
|
*
|
|
* @param {Array.<ol.structs.RTreeNode>} nodes Array of nodes.
|
|
* @private
|
|
* @return {Array.<ol.structs.RTreeNode>} An array of two nodes.
|
|
*/
|
|
ol.structs.RTree.prototype.linearSplit_ = function(nodes) {
|
|
var n = this.pickLinear_(nodes);
|
|
while (nodes.length > 0) {
|
|
this.pickNext_(nodes, n[0], n[1]);
|
|
}
|
|
return n;
|
|
};
|
|
|
|
|
|
/**
|
|
* Pick the "best" two starter nodes to use as seeds using the "linear"
|
|
* criteria.
|
|
*
|
|
* @param {Array.<ol.structs.RTreeNode>} nodes Array of source nodes.
|
|
* @private
|
|
* @return {Array.<ol.structs.RTreeNode>} An array of two nodes.
|
|
*/
|
|
ol.structs.RTree.prototype.pickLinear_ = function(nodes) {
|
|
var lowestHighX = nodes.length - 1;
|
|
var highestLowX = 0;
|
|
var lowestHighY = nodes.length - 1;
|
|
var highestLowY = 0;
|
|
var t1, t2;
|
|
|
|
for (var i = nodes.length - 2; i >= 0; --i) {
|
|
var l = nodes[i];
|
|
if (l.extent[0] > nodes[highestLowX].extent[0]) {
|
|
highestLowX = i;
|
|
} else if (l.extent[1] < nodes[lowestHighX].extent[2]) {
|
|
lowestHighX = i;
|
|
}
|
|
if (l.extent[2] > nodes[highestLowY].extent[2]) {
|
|
highestLowY = i;
|
|
} else if (l.extent[3] < nodes[lowestHighY].extent[3]) {
|
|
lowestHighY = i;
|
|
}
|
|
}
|
|
var dx = Math.abs(nodes[lowestHighX].extent[1] -
|
|
nodes[highestLowX].extent[0]);
|
|
var dy = Math.abs(nodes[lowestHighY].extent[3] -
|
|
nodes[highestLowY].extent[2]);
|
|
if (dx > dy) {
|
|
if (lowestHighX > highestLowX) {
|
|
t1 = nodes.splice(lowestHighX, 1)[0];
|
|
t2 = nodes.splice(highestLowX, 1)[0];
|
|
} else {
|
|
t2 = nodes.splice(highestLowX, 1)[0];
|
|
t1 = nodes.splice(lowestHighX, 1)[0];
|
|
}
|
|
} else {
|
|
if (lowestHighY > highestLowY) {
|
|
t1 = nodes.splice(lowestHighY, 1)[0];
|
|
t2 = nodes.splice(highestLowY, 1)[0];
|
|
} else {
|
|
t2 = nodes.splice(highestLowY, 1)[0];
|
|
t1 = nodes.splice(lowestHighY, 1)[0];
|
|
}
|
|
}
|
|
return [
|
|
/** @type {ol.structs.RTreeNode} */
|
|
({extent: t1.extent.concat(), nodes: [t1]}),
|
|
/** @type {ol.structs.RTreeNode} */
|
|
({extent: t2.extent.concat(), nodes: [t2]})
|
|
];
|
|
};
|
|
|
|
|
|
/**
|
|
* Insert the best source rectangle into the best fitting parent node: a or b.
|
|
*
|
|
* @param {Array.<ol.structs.RTreeNode>} nodes Source node array.
|
|
* @param {ol.structs.RTreeNode} a Target node array a.
|
|
* @param {ol.structs.RTreeNode} b Target node array b.
|
|
* @private
|
|
*/
|
|
ol.structs.RTree.prototype.pickNext_ = function(nodes, a, b) {
|
|
// Area of new enlarged rectangle
|
|
var areaA = ol.structs.RTree.squarifiedRatio_(a.extent[1] - a.extent[0],
|
|
a.extent[3] - a.extent[2], a.nodes.length + 1);
|
|
var areaB = ol.structs.RTree.squarifiedRatio_(b.extent[1] - b.extent[0],
|
|
b.extent[3] - b.extent[2], b.nodes.length + 1);
|
|
var highAreaDelta;
|
|
var highAreaNode;
|
|
var lowestGrowthGroup;
|
|
|
|
for (var i = nodes.length - 1; i >= 0; --i) {
|
|
var l = nodes[i];
|
|
|
|
var newAreaA = [
|
|
a.extent[0] < l.extent[0] ? a.extent[0] : l.extent[0],
|
|
a.extent[1] > l.extent[1] ? a.extent[1] : l.extent[1],
|
|
a.extent[2] < l.extent[2] ? a.extent[2] : l.extent[2],
|
|
a.extent[3] > l.extent[3] ? a.extent[3] : l.extent[3]
|
|
];
|
|
var changeNewAreaA = Math.abs(ol.structs.RTree.squarifiedRatio_(
|
|
newAreaA[1] - newAreaA[0],
|
|
newAreaA[3] - newAreaA[2], a.nodes.length + 2) - areaA);
|
|
|
|
var newAreaB = [
|
|
b.extent[0] < l.extent[0] ? b.extent[0] : l.extent[0],
|
|
b.extent[1] > l.extent[1] ? b.extent[1] : l.extent[1],
|
|
b.extent[2] < l.extent[2] ? b.extent[2] : l.extent[2],
|
|
b.extent[3] > l.extent[3] ? b.extent[3] : l.extent[3]
|
|
];
|
|
var changeNewAreaB = Math.abs(ol.structs.RTree.squarifiedRatio_(
|
|
newAreaB[1] - newAreaB[0], newAreaB[3] - newAreaB[2],
|
|
b.nodes.length + 2) - areaB);
|
|
|
|
var changeNewAreaDelta = Math.abs(changeNewAreaB - changeNewAreaA);
|
|
if (!highAreaNode || !highAreaDelta ||
|
|
changeNewAreaDelta < highAreaDelta) {
|
|
highAreaNode = i;
|
|
highAreaDelta = changeNewAreaDelta;
|
|
lowestGrowthGroup = changeNewAreaB < changeNewAreaA ? b : a;
|
|
}
|
|
}
|
|
var tempNode = nodes.splice(highAreaNode, 1)[0];
|
|
if (a.nodes.length + nodes.length + 1 <= this.minWidth_) {
|
|
a.nodes.push(tempNode);
|
|
ol.extent.extend(a.extent, tempNode.extent);
|
|
} else if (b.nodes.length + nodes.length + 1 <= this.minWidth_) {
|
|
b.nodes.push(tempNode);
|
|
ol.extent.extend(b.extent, tempNode.extent);
|
|
}
|
|
else {
|
|
lowestGrowthGroup.nodes.push(tempNode);
|
|
ol.extent.extend(lowestGrowthGroup.extent, tempNode.extent);
|
|
}
|
|
};
|
|
|
|
|
|
/**
|
|
* Non-recursive function that deletes a specific region.
|
|
*
|
|
* @param {ol.Extent} extent Extent.
|
|
* @param {Object=} opt_obj Object.
|
|
* @return {Array} Result.
|
|
* @this {ol.structs.RTree}
|
|
*/
|
|
ol.structs.RTree.prototype.remove = function(extent, opt_obj) {
|
|
arguments[0] = /** @type {ol.structs.RTreeNode} */ ({extent: extent});
|
|
switch (arguments.length) {
|
|
case 1:
|
|
arguments[1] = false; // opt_obj == false for conditionals
|
|
case 2:
|
|
arguments[2] = this.rootTree_; // Add root node to end of argument list
|
|
default:
|
|
arguments.length = 3;
|
|
}
|
|
if (arguments[1] === false) { // Do area-wide †
|
|
var numberDeleted = 0;
|
|
var result = [];
|
|
do {
|
|
numberDeleted = result.length;
|
|
result = result.concat(this.removeSubtree_.apply(this, arguments));
|
|
} while (numberDeleted != result.length);
|
|
return result;
|
|
} else { // Delete a specific item
|
|
return this.removeSubtree_.apply(this, arguments);
|
|
}
|
|
};
|
|
|
|
|
|
/**
|
|
* Find the best specific node(s) for object to be deleted from.
|
|
*
|
|
* @param {ol.structs.RTreeNode} rect Rectangle.
|
|
* @param {Object} obj Object.
|
|
* @param {ol.structs.RTreeNode} root Root to start search.
|
|
* @private
|
|
* @return {Array} Leaf node parent.
|
|
*/
|
|
ol.structs.RTree.prototype.removeSubtree_ = function(rect, obj, root) {
|
|
var hitStack = []; // Contains the elements that overlap
|
|
var countStack = []; // Contains the elements that overlap
|
|
var returnArray = [];
|
|
var currentDepth = 1;
|
|
|
|
if (!rect || !ol.extent.intersects(rect.extent, root.extent)) {
|
|
return returnArray;
|
|
}
|
|
|
|
/** @type {ol.structs.RTreeNode} */
|
|
var workingObject = /** @type {ol.structs.RTreeNode} */
|
|
({extent: rect.extent.concat(), target: obj});
|
|
|
|
countStack.push(root.nodes.length);
|
|
hitStack.push(root);
|
|
|
|
do {
|
|
var tree = hitStack.pop();
|
|
var i = countStack.pop() - 1;
|
|
|
|
if (goog.isDef(workingObject.target)) {
|
|
// We are searching for a target
|
|
while (i >= 0) {
|
|
var lTree = tree.nodes[i];
|
|
if (ol.extent.intersects(workingObject.extent, lTree.extent)) {
|
|
if ((workingObject.target && goog.isDef(lTree.leaf) &&
|
|
lTree.leaf === workingObject.target) ||
|
|
(!workingObject.target && (goog.isDef(lTree.leaf) ||
|
|
ol.extent.containsExtent(workingObject.extent, lTree.extent))))
|
|
{ // A Match !!
|
|
// Yup we found a match...
|
|
// we can cancel search and start walking up the list
|
|
if (goog.isDef(lTree.nodes)) {
|
|
// If we are deleting a node not a leaf...
|
|
returnArray = this.searchSubtree_(lTree, true, [], lTree);
|
|
tree.nodes.splice(i, 1);
|
|
} else {
|
|
returnArray = tree.nodes.splice(i, 1);
|
|
}
|
|
// Resize MBR down...
|
|
ol.structs.RTree.recalculateExtent_(tree);
|
|
workingObject.target = undefined;
|
|
if (tree.nodes.length < this.minWidth_) { // Underflow
|
|
workingObject.nodes = /** @type {Array} */
|
|
(this.searchSubtree_(tree, true, [], tree));
|
|
}
|
|
break;
|
|
} else if (goog.isDef(lTree.nodes)) {
|
|
// Not a Leaf
|
|
currentDepth += 1;
|
|
countStack.push(i);
|
|
hitStack.push(tree);
|
|
tree = lTree;
|
|
i = lTree.nodes.length;
|
|
}
|
|
}
|
|
i -= 1;
|
|
}
|
|
} else if (goog.isDef(workingObject.nodes)) {
|
|
// We are unsplitting
|
|
tree.nodes.splice(i + 1, 1); // Remove unsplit node
|
|
// workingObject.nodes contains a list of elements removed from the
|
|
// tree so far
|
|
if (tree.nodes.length > 0) {
|
|
ol.structs.RTree.recalculateExtent_(tree);
|
|
}
|
|
for (var t = 0, tt = workingObject.nodes.length; t < tt; ++t) {
|
|
this.insertSubtree_(workingObject.nodes[t], tree);
|
|
}
|
|
workingObject.nodes.length = 0;
|
|
if (hitStack.length === 0 && tree.nodes.length <= 1) {
|
|
// Underflow..on root!
|
|
workingObject.nodes = /** @type {Array} */
|
|
(this.searchSubtree_(tree, true, workingObject.nodes, tree));
|
|
tree.nodes.length = 0;
|
|
hitStack.push(tree);
|
|
countStack.push(1);
|
|
} else if (hitStack.length > 0 && tree.nodes.length < this.minWidth_) {
|
|
// Underflow..AGAIN!
|
|
workingObject.nodes = /** @type {Array} */
|
|
(this.searchSubtree_(tree, true, workingObject.nodes, tree));
|
|
tree.nodes.length = 0;
|
|
} else {
|
|
workingObject.nodes = undefined; // Just start resizing
|
|
}
|
|
} else { // we are just resizing
|
|
ol.structs.RTree.recalculateExtent_(tree);
|
|
}
|
|
currentDepth -= 1;
|
|
} while (hitStack.length > 0);
|
|
|
|
return returnArray;
|
|
};
|
|
|
|
|
|
/**
|
|
* Non-recursive search function
|
|
*
|
|
* @param {ol.Extent} extent Extent.
|
|
* @param {string=} opt_type Optional type of the objects we want to find.
|
|
* @return {Array} Result.
|
|
* @this {ol.structs.RTree}
|
|
*/
|
|
ol.structs.RTree.prototype.search = function(extent, opt_type) {
|
|
var rect = /** @type {ol.structs.RTreeNode} */ ({extent: extent});
|
|
return /** @type {Array} */ (
|
|
this.searchSubtree_(rect, false, [], this.rootTree_, opt_type));
|
|
};
|
|
|
|
|
|
/**
|
|
* Non-recursive search function
|
|
*
|
|
* @param {ol.Extent} extent Extent.
|
|
* @param {string=} opt_type Optional type of the objects we want to find.
|
|
* @return {Object} Result. Keys are UIDs of the values.
|
|
* @this {ol.structs.RTree}
|
|
*/
|
|
ol.structs.RTree.prototype.searchReturningObject = function(extent, opt_type) {
|
|
var rect = /** @type {ol.structs.RTreeNode} */ ({extent: extent});
|
|
return /** @type {Object} */ (
|
|
this.searchSubtree_(rect, false, [], this.rootTree_, opt_type, true));
|
|
};
|
|
|
|
|
|
/**
|
|
* Non-recursive internal search function
|
|
*
|
|
* @param {ol.structs.RTreeNode} rect Rectangle.
|
|
* @param {boolean} returnNode Do we return nodes?
|
|
* @param {Array|Object} result Result.
|
|
* @param {ol.structs.RTreeNode} root Root.
|
|
* @param {string=} opt_type Optional type to search for.
|
|
* @param {boolean=} opt_resultAsObject If set, result will be an object keyed
|
|
* by UID.
|
|
* @private
|
|
* @return {Array|Object} Result.
|
|
*/
|
|
ol.structs.RTree.prototype.searchSubtree_ = function(
|
|
rect, returnNode, result, root, opt_type, opt_resultAsObject) {
|
|
var resultObject = {};
|
|
var hitStack = []; // Contains the elements that overlap
|
|
|
|
if (!ol.extent.intersects(rect.extent, root.extent)) {
|
|
return result;
|
|
}
|
|
|
|
hitStack.push(root.nodes);
|
|
|
|
do {
|
|
var nodes = hitStack.pop();
|
|
|
|
for (var i = nodes.length - 1; i >= 0; --i) {
|
|
var lTree = nodes[i];
|
|
if (ol.extent.intersects(rect.extent, lTree.extent)) {
|
|
if (goog.isDef(lTree.nodes)) { // Not a Leaf
|
|
hitStack.push(lTree.nodes);
|
|
} else if (goog.isDef(lTree.leaf)) { // A Leaf !!
|
|
if (!returnNode) {
|
|
// TODO keep track of type on all nodes so we don't have to
|
|
// walk all the way in to the leaf to know that we don't need it
|
|
if (!goog.isDef(opt_type) || lTree.type == opt_type) {
|
|
var obj = lTree.leaf;
|
|
if (goog.isDef(opt_resultAsObject)) {
|
|
resultObject[goog.getUid(obj).toString()] = obj;
|
|
} else {
|
|
result.push(obj);
|
|
}
|
|
}
|
|
} else {
|
|
result.push(lTree);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} while (hitStack.length > 0);
|
|
|
|
if (goog.isDef(opt_resultAsObject)) {
|
|
return resultObject;
|
|
} else {
|
|
return result;
|
|
}
|
|
};
|