Files
openlayers/src/ol/geom/flat/closest.js
2018-07-25 18:32:43 -07:00

251 lines
8.3 KiB
JavaScript

/**
* @module ol/geom/flat/closest
*/
import {lerp, squaredDistance as squaredDx} from '../../math.js';
/**
* Returns the point on the 2D line segment flatCoordinates[offset1] to
* flatCoordinates[offset2] that is closest to the point (x, y). Extra
* dimensions are linearly interpolated.
* @param {Array<number>} flatCoordinates Flat coordinates.
* @param {number} offset1 Offset 1.
* @param {number} offset2 Offset 2.
* @param {number} stride Stride.
* @param {number} x X.
* @param {number} y Y.
* @param {Array<number>} closestPoint Closest point.
*/
function assignClosest(flatCoordinates, offset1, offset2, stride, x, y, closestPoint) {
const x1 = flatCoordinates[offset1];
const y1 = flatCoordinates[offset1 + 1];
const dx = flatCoordinates[offset2] - x1;
const dy = flatCoordinates[offset2 + 1] - y1;
let offset;
if (dx === 0 && dy === 0) {
offset = offset1;
} else {
const t = ((x - x1) * dx + (y - y1) * dy) / (dx * dx + dy * dy);
if (t > 1) {
offset = offset2;
} else if (t > 0) {
for (let i = 0; i < stride; ++i) {
closestPoint[i] = lerp(flatCoordinates[offset1 + i],
flatCoordinates[offset2 + i], t);
}
closestPoint.length = stride;
return;
} else {
offset = offset1;
}
}
for (let i = 0; i < stride; ++i) {
closestPoint[i] = flatCoordinates[offset + i];
}
closestPoint.length = stride;
}
/**
* Return the squared of the largest distance between any pair of consecutive
* coordinates.
* @param {Array<number>} flatCoordinates Flat coordinates.
* @param {number} offset Offset.
* @param {number} end End.
* @param {number} stride Stride.
* @param {number} max Max squared delta.
* @return {number} Max squared delta.
*/
export function maxSquaredDelta(flatCoordinates, offset, end, stride, max) {
let x1 = flatCoordinates[offset];
let y1 = flatCoordinates[offset + 1];
for (offset += stride; offset < end; offset += stride) {
const x2 = flatCoordinates[offset];
const y2 = flatCoordinates[offset + 1];
const squaredDelta = squaredDx(x1, y1, x2, y2);
if (squaredDelta > max) {
max = squaredDelta;
}
x1 = x2;
y1 = y2;
}
return max;
}
/**
* @param {Array<number>} flatCoordinates Flat coordinates.
* @param {number} offset Offset.
* @param {Array<number>} ends Ends.
* @param {number} stride Stride.
* @param {number} max Max squared delta.
* @return {number} Max squared delta.
*/
export function arrayMaxSquaredDelta(flatCoordinates, offset, ends, stride, max) {
for (let i = 0, ii = ends.length; i < ii; ++i) {
const end = ends[i];
max = maxSquaredDelta(
flatCoordinates, offset, end, stride, max);
offset = end;
}
return max;
}
/**
* @param {Array<number>} flatCoordinates Flat coordinates.
* @param {number} offset Offset.
* @param {Array<Array<number>>} endss Endss.
* @param {number} stride Stride.
* @param {number} max Max squared delta.
* @return {number} Max squared delta.
*/
export function multiArrayMaxSquaredDelta(flatCoordinates, offset, endss, stride, max) {
for (let i = 0, ii = endss.length; i < ii; ++i) {
const ends = endss[i];
max = arrayMaxSquaredDelta(
flatCoordinates, offset, ends, stride, max);
offset = ends[ends.length - 1];
}
return max;
}
/**
* @param {Array<number>} flatCoordinates Flat coordinates.
* @param {number} offset Offset.
* @param {number} end End.
* @param {number} stride Stride.
* @param {number} maxDelta Max delta.
* @param {boolean} isRing Is ring.
* @param {number} x X.
* @param {number} y Y.
* @param {Array<number>} closestPoint Closest point.
* @param {number} minSquaredDistance Minimum squared distance.
* @param {Array<number>=} opt_tmpPoint Temporary point object.
* @return {number} Minimum squared distance.
*/
export function assignClosestPoint(flatCoordinates, offset, end,
stride, maxDelta, isRing, x, y, closestPoint, minSquaredDistance,
opt_tmpPoint) {
if (offset == end) {
return minSquaredDistance;
}
let i, squaredDistance;
if (maxDelta === 0) {
// All points are identical, so just test the first point.
squaredDistance = squaredDx(
x, y, flatCoordinates[offset], flatCoordinates[offset + 1]);
if (squaredDistance < minSquaredDistance) {
for (i = 0; i < stride; ++i) {
closestPoint[i] = flatCoordinates[offset + i];
}
closestPoint.length = stride;
return squaredDistance;
} else {
return minSquaredDistance;
}
}
const tmpPoint = opt_tmpPoint ? opt_tmpPoint : [NaN, NaN];
let index = offset + stride;
while (index < end) {
assignClosest(
flatCoordinates, index - stride, index, stride, x, y, tmpPoint);
squaredDistance = squaredDx(x, y, tmpPoint[0], tmpPoint[1]);
if (squaredDistance < minSquaredDistance) {
minSquaredDistance = squaredDistance;
for (i = 0; i < stride; ++i) {
closestPoint[i] = tmpPoint[i];
}
closestPoint.length = stride;
index += stride;
} else {
// Skip ahead multiple points, because we know that all the skipped
// points cannot be any closer than the closest point we have found so
// far. We know this because we know how close the current point is, how
// close the closest point we have found so far is, and the maximum
// distance between consecutive points. For example, if we're currently
// at distance 10, the best we've found so far is 3, and that the maximum
// distance between consecutive points is 2, then we'll need to skip at
// least (10 - 3) / 2 == 3 (rounded down) points to have any chance of
// finding a closer point. We use Math.max(..., 1) to ensure that we
// always advance at least one point, to avoid an infinite loop.
index += stride * Math.max(
((Math.sqrt(squaredDistance) -
Math.sqrt(minSquaredDistance)) / maxDelta) | 0, 1);
}
}
if (isRing) {
// Check the closing segment.
assignClosest(
flatCoordinates, end - stride, offset, stride, x, y, tmpPoint);
squaredDistance = squaredDx(x, y, tmpPoint[0], tmpPoint[1]);
if (squaredDistance < minSquaredDistance) {
minSquaredDistance = squaredDistance;
for (i = 0; i < stride; ++i) {
closestPoint[i] = tmpPoint[i];
}
closestPoint.length = stride;
}
}
return minSquaredDistance;
}
/**
* @param {Array<number>} flatCoordinates Flat coordinates.
* @param {number} offset Offset.
* @param {Array<number>} ends Ends.
* @param {number} stride Stride.
* @param {number} maxDelta Max delta.
* @param {boolean} isRing Is ring.
* @param {number} x X.
* @param {number} y Y.
* @param {Array<number>} closestPoint Closest point.
* @param {number} minSquaredDistance Minimum squared distance.
* @param {Array<number>=} opt_tmpPoint Temporary point object.
* @return {number} Minimum squared distance.
*/
export function assignClosestArrayPoint(flatCoordinates, offset, ends,
stride, maxDelta, isRing, x, y, closestPoint, minSquaredDistance,
opt_tmpPoint) {
const tmpPoint = opt_tmpPoint ? opt_tmpPoint : [NaN, NaN];
for (let i = 0, ii = ends.length; i < ii; ++i) {
const end = ends[i];
minSquaredDistance = assignClosestPoint(
flatCoordinates, offset, end, stride,
maxDelta, isRing, x, y, closestPoint, minSquaredDistance, tmpPoint);
offset = end;
}
return minSquaredDistance;
}
/**
* @param {Array<number>} flatCoordinates Flat coordinates.
* @param {number} offset Offset.
* @param {Array<Array<number>>} endss Endss.
* @param {number} stride Stride.
* @param {number} maxDelta Max delta.
* @param {boolean} isRing Is ring.
* @param {number} x X.
* @param {number} y Y.
* @param {Array<number>} closestPoint Closest point.
* @param {number} minSquaredDistance Minimum squared distance.
* @param {Array<number>=} opt_tmpPoint Temporary point object.
* @return {number} Minimum squared distance.
*/
export function assignClosestMultiArrayPoint(flatCoordinates, offset,
endss, stride, maxDelta, isRing, x, y, closestPoint, minSquaredDistance,
opt_tmpPoint) {
const tmpPoint = opt_tmpPoint ? opt_tmpPoint : [NaN, NaN];
for (let i = 0, ii = endss.length; i < ii; ++i) {
const ends = endss[i];
minSquaredDistance = assignClosestArrayPoint(
flatCoordinates, offset, ends, stride,
maxDelta, isRing, x, y, closestPoint, minSquaredDistance, tmpPoint);
offset = ends[ends.length - 1];
}
return minSquaredDistance;
}