This pull requests replaces type check hint assertions with type casts, library sanity check assertions with conditional console.assert statements in debug mode, and runtime sanity checks with assertions that throw an ol.AssertionError with an error code for lookup outside the library.
230 lines
6.6 KiB
JavaScript
230 lines
6.6 KiB
JavaScript
goog.provide('ol.transform');
|
|
|
|
/**
|
|
* Collection of affine 2d transformation functions. The functions work on an
|
|
* array of 6 elements. The element order is compatible with the [SVGMatrix
|
|
* interface](https://developer.mozilla.org/en-US/docs/Web/API/SVGMatrix) and is
|
|
* a subset (elements a to f) of a 3x3 martrix:
|
|
* ```
|
|
* [ a c e ]
|
|
* [ b d f ]
|
|
* [ 0 0 1 ]
|
|
* ```
|
|
*/
|
|
|
|
|
|
/**
|
|
* @private
|
|
* @type {ol.Transform}
|
|
*/
|
|
ol.transform.tmp_ = new Array(6);
|
|
|
|
|
|
/**
|
|
* Create an identity transform.
|
|
* @return {!ol.Transform} Identity transform.
|
|
*/
|
|
ol.transform.create = function() {
|
|
return [1, 0, 0, 1, 0, 0];
|
|
};
|
|
|
|
|
|
/**
|
|
* Resets the given transform to an identity transform.
|
|
* @param {!ol.Transform} transform Transform.
|
|
* @return {!ol.Transform} Transform.
|
|
*/
|
|
ol.transform.reset = function(transform) {
|
|
return ol.transform.set(transform, 1, 0, 0, 1, 0, 0);
|
|
};
|
|
|
|
|
|
/**
|
|
* Multiply the underlying matrices of two transforms and return the result in
|
|
* the first transform.
|
|
* @param {!ol.Transform} transform1 Transform parameters of matrix 1.
|
|
* @param {!ol.Transform} transform2 Transform parameters of matrix 2.
|
|
* @return {!ol.Transform} transform1 multiplied with transform2.
|
|
*/
|
|
ol.transform.multiply = function(transform1, transform2) {
|
|
var a1 = transform1[0];
|
|
var b1 = transform1[1];
|
|
var c1 = transform1[2];
|
|
var d1 = transform1[3];
|
|
var e1 = transform1[4];
|
|
var f1 = transform1[5];
|
|
var a2 = transform2[0];
|
|
var b2 = transform2[1];
|
|
var c2 = transform2[2];
|
|
var d2 = transform2[3];
|
|
var e2 = transform2[4];
|
|
var f2 = transform2[5];
|
|
|
|
transform1[0] = a1 * a2 + c1 * b2;
|
|
transform1[1] = b1 * a2 + d1 * b2;
|
|
transform1[2] = a1 * c2 + c1 * d2;
|
|
transform1[3] = b1 * c2 + d1 * d2;
|
|
transform1[4] = a1 * e2 + c1 * f2 + e1;
|
|
transform1[5] = b1 * e2 + d1 * f2 + f1;
|
|
|
|
return transform1;
|
|
};
|
|
|
|
/**
|
|
* Set the transform components a-f on a given transform.
|
|
* @param {!ol.Transform} transform Transform.
|
|
* @param {number} a The a component of the transform.
|
|
* @param {number} b The b component of the transform.
|
|
* @param {number} c The c component of the transform.
|
|
* @param {number} d The d component of the transform.
|
|
* @param {number} e The e component of the transform.
|
|
* @param {number} f The f component of the transform.
|
|
* @return {!ol.Transform} Matrix with transform applied.
|
|
*/
|
|
ol.transform.set = function(transform, a, b, c, d, e, f) {
|
|
transform[0] = a;
|
|
transform[1] = b;
|
|
transform[2] = c;
|
|
transform[3] = d;
|
|
transform[4] = e;
|
|
transform[5] = f;
|
|
return transform;
|
|
};
|
|
|
|
|
|
/**
|
|
* Set transform on one matrix from another matrix.
|
|
* @param {!ol.Transform} transform1 Matrix to set transform to.
|
|
* @param {!ol.Transform} transform2 Matrix to set transform from.
|
|
* @return {!ol.Transform} transform1 with transform from transform2 applied.
|
|
*/
|
|
ol.transform.setFromArray = function(transform1, transform2) {
|
|
transform1[0] = transform2[0];
|
|
transform1[1] = transform2[1];
|
|
transform1[2] = transform2[2];
|
|
transform1[3] = transform2[3];
|
|
transform1[4] = transform2[4];
|
|
transform1[5] = transform2[5];
|
|
return transform1;
|
|
};
|
|
|
|
|
|
/**
|
|
* Transforms the given coordinate with the given transform returning the
|
|
* resulting, transformed coordinate. The coordinate will be modified in-place.
|
|
*
|
|
* @param {ol.Transform} transform The transformation.
|
|
* @param {ol.Coordinate|ol.Pixel} coordinate The coordinate to transform.
|
|
* @return {ol.Coordinate|ol.Pixel} return coordinate so that operations can be
|
|
* chained together.
|
|
*/
|
|
ol.transform.apply = function(transform, coordinate) {
|
|
var x = coordinate[0], y = coordinate[1];
|
|
coordinate[0] = transform[0] * x + transform[2] * y + transform[4];
|
|
coordinate[1] = transform[1] * x + transform[3] * y + transform[5];
|
|
return coordinate;
|
|
};
|
|
|
|
|
|
/**
|
|
* Applies rotation to the given transform.
|
|
* @param {!ol.Transform} transform Transform.
|
|
* @param {number} angle Angle in radians.
|
|
* @return {!ol.Transform} The rotated transform.
|
|
*/
|
|
ol.transform.rotate = function(transform, angle) {
|
|
var cos = Math.cos(angle);
|
|
var sin = Math.sin(angle);
|
|
return ol.transform.multiply(transform,
|
|
ol.transform.set(ol.transform.tmp_, cos, sin, -sin, cos, 0, 0));
|
|
};
|
|
|
|
|
|
/**
|
|
* Applies scale to a given transform.
|
|
* @param {!ol.Transform} transform Transform.
|
|
* @param {number} x Scale factor x.
|
|
* @param {number} y Scale factor y.
|
|
* @return {!ol.Transform} The scaled transform.
|
|
*/
|
|
ol.transform.scale = function(transform, x, y) {
|
|
return ol.transform.multiply(transform,
|
|
ol.transform.set(ol.transform.tmp_, x, 0, 0, y, 0, 0));
|
|
};
|
|
|
|
|
|
/**
|
|
* Applies translation to the given transform.
|
|
* @param {!ol.Transform} transform Transform.
|
|
* @param {number} dx Translation x.
|
|
* @param {number} dy Translation y.
|
|
* @return {!ol.Transform} The translated transform.
|
|
*/
|
|
ol.transform.translate = function(transform, dx, dy) {
|
|
return ol.transform.multiply(transform,
|
|
ol.transform.set(ol.transform.tmp_, 1, 0, 0, 1, dx, dy));
|
|
};
|
|
|
|
|
|
/**
|
|
* Creates a composite transform given an initial translation, scale, rotation, and
|
|
* final translation (in that order only, not commutative).
|
|
* @param {!ol.Transform} transform The transform (will be modified in place).
|
|
* @param {number} dx1 Initial translation x.
|
|
* @param {number} dy1 Initial translation y.
|
|
* @param {number} sx Scale factor x.
|
|
* @param {number} sy Scale factor y.
|
|
* @param {number} angle Rotation (in counter-clockwise radians).
|
|
* @param {number} dx2 Final translation x.
|
|
* @param {number} dy2 Final translation y.
|
|
* @return {!ol.Transform} The composite transform.
|
|
*/
|
|
ol.transform.compose = function(transform, dx1, dy1, sx, sy, angle, dx2, dy2) {
|
|
var sin = Math.sin(angle);
|
|
var cos = Math.cos(angle);
|
|
transform[0] = sx * cos;
|
|
transform[1] = sy * sin;
|
|
transform[2] = -sx * sin;
|
|
transform[3] = sy * cos;
|
|
transform[4] = dx2 * sx * cos - dy2 * sx * sin + dx1;
|
|
transform[5] = dx2 * sy * sin + dy2 * sy * cos + dy1;
|
|
return transform;
|
|
};
|
|
|
|
|
|
/**
|
|
* Invert the given transform.
|
|
* @param {!ol.Transform} transform Transform.
|
|
* @return {!ol.Transform} Inverse of the transform.
|
|
*/
|
|
ol.transform.invert = function(transform) {
|
|
var det = ol.transform.determinant(transform);
|
|
ol.assert(det !== 0, 32); // Transformation matrix cannot be inverted
|
|
|
|
var a = transform[0];
|
|
var b = transform[1];
|
|
var c = transform[2];
|
|
var d = transform[3];
|
|
var e = transform[4];
|
|
var f = transform[5];
|
|
|
|
transform[0] = d / det;
|
|
transform[1] = -b / det;
|
|
transform[2] = -c / det;
|
|
transform[3] = a / det;
|
|
transform[4] = (c * f - d * e) / det;
|
|
transform[5] = -(a * f - b * e) / det;
|
|
|
|
return transform;
|
|
};
|
|
|
|
|
|
/**
|
|
* Returns the determinant of the given matrix.
|
|
* @param {!ol.Transform} mat Matrix.
|
|
* @return {number} Determinant.
|
|
*/
|
|
ol.transform.determinant = function(mat) {
|
|
return mat[0] * mat[3] - mat[1] * mat[2];
|
|
};
|