207 lines
5.4 KiB
JavaScript
207 lines
5.4 KiB
JavaScript
/**
|
|
* @module ol/math
|
|
*/
|
|
|
|
/**
|
|
* Takes a number and clamps it to within the provided bounds.
|
|
* @param {number} value The input number.
|
|
* @param {number} min The minimum value to return.
|
|
* @param {number} max The maximum value to return.
|
|
* @return {number} The input number if it is within bounds, or the nearest
|
|
* number within the bounds.
|
|
*/
|
|
export function clamp(value, min, max) {
|
|
return Math.min(Math.max(value, min), max);
|
|
}
|
|
|
|
/**
|
|
* Return the hyperbolic cosine of a given number. The method will use the
|
|
* native `Math.cosh` function if it is available, otherwise the hyperbolic
|
|
* cosine will be calculated via the reference implementation of the Mozilla
|
|
* developer network.
|
|
*
|
|
* @param {number} x X.
|
|
* @return {number} Hyperbolic cosine of x.
|
|
*/
|
|
export const cosh = (function () {
|
|
// Wrapped in a iife, to save the overhead of checking for the native
|
|
// implementation on every invocation.
|
|
let cosh;
|
|
if ('cosh' in Math) {
|
|
// The environment supports the native Math.cosh function, use it…
|
|
cosh = Math.cosh;
|
|
} else {
|
|
// … else, use the reference implementation of MDN:
|
|
cosh = function (x) {
|
|
const y = /** @type {Math} */ (Math).exp(x);
|
|
return (y + 1 / y) / 2;
|
|
};
|
|
}
|
|
return cosh;
|
|
})();
|
|
|
|
/**
|
|
* Return the base 2 logarithm of a given number. The method will use the
|
|
* native `Math.log2` function if it is available, otherwise the base 2
|
|
* logarithm will be calculated via the reference implementation of the
|
|
* Mozilla developer network.
|
|
*
|
|
* @param {number} x X.
|
|
* @return {number} Base 2 logarithm of x.
|
|
*/
|
|
export const log2 = (function () {
|
|
// Wrapped in a iife, to save the overhead of checking for the native
|
|
// implementation on every invocation.
|
|
let log2;
|
|
if ('log2' in Math) {
|
|
// The environment supports the native Math.log2 function, use it…
|
|
log2 = Math.log2;
|
|
} else {
|
|
// … else, use the reference implementation of MDN:
|
|
log2 = function (x) {
|
|
return Math.log(x) * Math.LOG2E;
|
|
};
|
|
}
|
|
return log2;
|
|
})();
|
|
|
|
/**
|
|
* Returns the square of the closest distance between the point (x, y) and the
|
|
* line segment (x1, y1) to (x2, y2).
|
|
* @param {number} x X.
|
|
* @param {number} y Y.
|
|
* @param {number} x1 X1.
|
|
* @param {number} y1 Y1.
|
|
* @param {number} x2 X2.
|
|
* @param {number} y2 Y2.
|
|
* @return {number} Squared distance.
|
|
*/
|
|
export function squaredSegmentDistance(x, y, x1, y1, x2, y2) {
|
|
const dx = x2 - x1;
|
|
const dy = y2 - y1;
|
|
if (dx !== 0 || dy !== 0) {
|
|
const t = ((x - x1) * dx + (y - y1) * dy) / (dx * dx + dy * dy);
|
|
if (t > 1) {
|
|
x1 = x2;
|
|
y1 = y2;
|
|
} else if (t > 0) {
|
|
x1 += dx * t;
|
|
y1 += dy * t;
|
|
}
|
|
}
|
|
return squaredDistance(x, y, x1, y1);
|
|
}
|
|
|
|
/**
|
|
* Returns the square of the distance between the points (x1, y1) and (x2, y2).
|
|
* @param {number} x1 X1.
|
|
* @param {number} y1 Y1.
|
|
* @param {number} x2 X2.
|
|
* @param {number} y2 Y2.
|
|
* @return {number} Squared distance.
|
|
*/
|
|
export function squaredDistance(x1, y1, x2, y2) {
|
|
const dx = x2 - x1;
|
|
const dy = y2 - y1;
|
|
return dx * dx + dy * dy;
|
|
}
|
|
|
|
/**
|
|
* Solves system of linear equations using Gaussian elimination method.
|
|
*
|
|
* @param {Array<Array<number>>} mat Augmented matrix (n x n + 1 column)
|
|
* in row-major order.
|
|
* @return {Array<number>} The resulting vector.
|
|
*/
|
|
export function solveLinearSystem(mat) {
|
|
const n = mat.length;
|
|
|
|
for (let i = 0; i < n; i++) {
|
|
// Find max in the i-th column (ignoring i - 1 first rows)
|
|
let maxRow = i;
|
|
let maxEl = Math.abs(mat[i][i]);
|
|
for (let r = i + 1; r < n; r++) {
|
|
const absValue = Math.abs(mat[r][i]);
|
|
if (absValue > maxEl) {
|
|
maxEl = absValue;
|
|
maxRow = r;
|
|
}
|
|
}
|
|
|
|
if (maxEl === 0) {
|
|
return null; // matrix is singular
|
|
}
|
|
|
|
// Swap max row with i-th (current) row
|
|
const tmp = mat[maxRow];
|
|
mat[maxRow] = mat[i];
|
|
mat[i] = tmp;
|
|
|
|
// Subtract the i-th row to make all the remaining rows 0 in the i-th column
|
|
for (let j = i + 1; j < n; j++) {
|
|
const coef = -mat[j][i] / mat[i][i];
|
|
for (let k = i; k < n + 1; k++) {
|
|
if (i == k) {
|
|
mat[j][k] = 0;
|
|
} else {
|
|
mat[j][k] += coef * mat[i][k];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Solve Ax=b for upper triangular matrix A (mat)
|
|
const x = new Array(n);
|
|
for (let l = n - 1; l >= 0; l--) {
|
|
x[l] = mat[l][n] / mat[l][l];
|
|
for (let m = l - 1; m >= 0; m--) {
|
|
mat[m][n] -= mat[m][l] * x[l];
|
|
}
|
|
}
|
|
return x;
|
|
}
|
|
|
|
/**
|
|
* Converts radians to to degrees.
|
|
*
|
|
* @param {number} angleInRadians Angle in radians.
|
|
* @return {number} Angle in degrees.
|
|
*/
|
|
export function toDegrees(angleInRadians) {
|
|
return (angleInRadians * 180) / Math.PI;
|
|
}
|
|
|
|
/**
|
|
* Converts degrees to radians.
|
|
*
|
|
* @param {number} angleInDegrees Angle in degrees.
|
|
* @return {number} Angle in radians.
|
|
*/
|
|
export function toRadians(angleInDegrees) {
|
|
return (angleInDegrees * Math.PI) / 180;
|
|
}
|
|
|
|
/**
|
|
* Returns the modulo of a / b, depending on the sign of b.
|
|
*
|
|
* @param {number} a Dividend.
|
|
* @param {number} b Divisor.
|
|
* @return {number} Modulo.
|
|
*/
|
|
export function modulo(a, b) {
|
|
const r = a % b;
|
|
return r * b < 0 ? r + b : r;
|
|
}
|
|
|
|
/**
|
|
* Calculates the linearly interpolated value of x between a and b.
|
|
*
|
|
* @param {number} a Number
|
|
* @param {number} b Number
|
|
* @param {number} x Value to be interpolated.
|
|
* @return {number} Interpolated value.
|
|
*/
|
|
export function lerp(a, b, x) {
|
|
return a + x * (b - a);
|
|
}
|