Files
openlayers/lib/OpenLayers/Geometry.js
ahocevar cc2e19d789 added support for text labels. This also adds getCentroid methods to all
geometries. Thanks crschmidt for the great help with this patch, and 
thanks to camptocamp for the initial work on this and rcoup for creating 
the first patches. r=crschmidt (closes #1895)


git-svn-id: http://svn.openlayers.org/trunk/openlayers@9262 dc9f47b5-9b13-0410-9fdd-eb0c1a62fdaf
2009-04-10 16:05:26 +00:00

456 lines
14 KiB
JavaScript

/* Copyright (c) 2006-2008 MetaCarta, Inc., published under the Clear BSD
* license. See http://svn.openlayers.org/trunk/openlayers/license.txt for the
* full text of the license. */
/**
* @requires OpenLayers/Format/WKT.js
* @requires OpenLayers/Feature/Vector.js
*/
/**
* Class: OpenLayers.Geometry
* A Geometry is a description of a geographic object. Create an instance of
* this class with the <OpenLayers.Geometry> constructor. This is a base class,
* typical geometry types are described by subclasses of this class.
*/
OpenLayers.Geometry = OpenLayers.Class({
/**
* Property: id
* {String} A unique identifier for this geometry.
*/
id: null,
/**
* Property: parent
* {<OpenLayers.Geometry>}This is set when a Geometry is added as component
* of another geometry
*/
parent: null,
/**
* Property: bounds
* {<OpenLayers.Bounds>} The bounds of this geometry
*/
bounds: null,
/**
* Constructor: OpenLayers.Geometry
* Creates a geometry object.
*/
initialize: function() {
this.id = OpenLayers.Util.createUniqueID(this.CLASS_NAME+ "_");
},
/**
* Method: destroy
* Destroy this geometry.
*/
destroy: function() {
this.id = null;
this.bounds = null;
},
/**
* APIMethod: clone
* Create a clone of this geometry. Does not set any non-standard
* properties of the cloned geometry.
*
* Returns:
* {<OpenLayers.Geometry>} An exact clone of this geometry.
*/
clone: function() {
return new OpenLayers.Geometry();
},
/**
* Set the bounds for this Geometry.
*
* Parameters:
* object - {<OpenLayers.Bounds>}
*/
setBounds: function(bounds) {
if (bounds) {
this.bounds = bounds.clone();
}
},
/**
* Method: clearBounds
* Nullify this components bounds and that of its parent as well.
*/
clearBounds: function() {
this.bounds = null;
if (this.parent) {
this.parent.clearBounds();
}
},
/**
* Method: extendBounds
* Extend the existing bounds to include the new bounds.
* If geometry's bounds is not yet set, then set a new Bounds.
*
* Parameters:
* newBounds - {<OpenLayers.Bounds>}
*/
extendBounds: function(newBounds){
var bounds = this.getBounds();
if (!bounds) {
this.setBounds(newBounds);
} else {
this.bounds.extend(newBounds);
}
},
/**
* APIMethod: getBounds
* Get the bounds for this Geometry. If bounds is not set, it
* is calculated again, this makes queries faster.
*
* Returns:
* {<OpenLayers.Bounds>}
*/
getBounds: function() {
if (this.bounds == null) {
this.calculateBounds();
}
return this.bounds;
},
/**
* APIMethod: calculateBounds
* Recalculate the bounds for the geometry.
*/
calculateBounds: function() {
//
// This should be overridden by subclasses.
//
},
/**
* APIMethod: distanceTo
* Calculate the closest distance between two geometries (on the x-y plane).
*
* Parameters:
* geometry - {<OpenLayers.Geometry>} The target geometry.
* options - {Object} Optional properties for configuring the distance
* calculation.
*
* Valid options depend on the specific geometry type.
*
* Returns:
* {Number | Object} The distance between this geometry and the target.
* If details is true, the return will be an object with distance,
* x0, y0, x1, and x2 properties. The x0 and y0 properties represent
* the coordinates of the closest point on this geometry. The x1 and y1
* properties represent the coordinates of the closest point on the
* target geometry.
*/
distanceTo: function(geometry, options) {
},
/**
* APIMethod: getVertices
* Return a list of all points in this geometry.
*
* Parameters:
* nodes - {Boolean} For lines, only return vertices that are
* endpoints. If false, for lines, only vertices that are not
* endpoints will be returned. If not provided, all vertices will
* be returned.
*
* Returns:
* {Array} A list of all vertices in the geometry.
*/
getVertices: function(nodes) {
},
/**
* Method: atPoint
* Note - This is only an approximation based on the bounds of the
* geometry.
*
* Parameters:
* lonlat - {<OpenLayers.LonLat>}
* toleranceLon - {float} Optional tolerance in Geometric Coords
* toleranceLat - {float} Optional tolerance in Geographic Coords
*
* Returns:
* {Boolean} Whether or not the geometry is at the specified location
*/
atPoint: function(lonlat, toleranceLon, toleranceLat) {
var atPoint = false;
var bounds = this.getBounds();
if ((bounds != null) && (lonlat != null)) {
var dX = (toleranceLon != null) ? toleranceLon : 0;
var dY = (toleranceLat != null) ? toleranceLat : 0;
var toleranceBounds =
new OpenLayers.Bounds(this.bounds.left - dX,
this.bounds.bottom - dY,
this.bounds.right + dX,
this.bounds.top + dY);
atPoint = toleranceBounds.containsLonLat(lonlat);
}
return atPoint;
},
/**
* Method: getLength
* Calculate the length of this geometry. This method is defined in
* subclasses.
*
* Returns:
* {Float} The length of the collection by summing its parts
*/
getLength: function() {
//to be overridden by geometries that actually have a length
//
return 0.0;
},
/**
* Method: getArea
* Calculate the area of this geometry. This method is defined in subclasses.
*
* Returns:
* {Float} The area of the collection by summing its parts
*/
getArea: function() {
//to be overridden by geometries that actually have an area
//
return 0.0;
},
/**
* APIMethod: getCentroid
* Calculate the centroid of this geometry. This method is defined in subclasses.
*
* Returns:
* {<OpenLayers.Geometry.Point>} The centroid of the collection
*/
getCentroid: function() {
return null;
},
/**
* Method: toString
* Returns the Well-Known Text representation of a geometry
*
* Returns:
* {String} Well-Known Text
*/
toString: function() {
return OpenLayers.Format.WKT.prototype.write(
new OpenLayers.Feature.Vector(this)
);
},
CLASS_NAME: "OpenLayers.Geometry"
});
/**
* Function: OpenLayers.Geometry.fromWKT
* Generate a geometry given a Well-Known Text string.
*
* Parameters:
* wkt - {String} A string representing the geometry in Well-Known Text.
*
* Returns:
* {<OpenLayers.Geometry>} A geometry of the appropriate class.
*/
OpenLayers.Geometry.fromWKT = function(wkt) {
var format = arguments.callee.format;
if(!format) {
format = new OpenLayers.Format.WKT();
arguments.callee.format = format;
}
var geom;
var result = format.read(wkt);
if(result instanceof OpenLayers.Feature.Vector) {
geom = result.geometry;
} else if(result instanceof Array) {
var len = result.length;
var components = new Array(len);
for(var i=0; i<len; ++i) {
components[i] = result[i].geometry;
}
geom = new OpenLayers.Geometry.Collection(components);
}
return geom;
};
/**
* Method: OpenLayers.Geometry.segmentsIntersect
* Determine whether two line segments intersect. Optionally calculates
* and returns the intersection point. This function is optimized for
* cases where seg1.x2 >= seg2.x1 || seg2.x2 >= seg1.x1. In those
* obvious cases where there is no intersection, the function should
* not be called.
*
* Parameters:
* seg1 - {Object} Object representing a segment with properties x1, y1, x2,
* and y2. The start point is represented by x1 and y1. The end point
* is represented by x2 and y2. Start and end are ordered so that x1 < x2.
* seg2 - {Object} Object representing a segment with properties x1, y1, x2,
* and y2. The start point is represented by x1 and y1. The end point
* is represented by x2 and y2. Start and end are ordered so that x1 < x2.
* options - {Object} Optional properties for calculating the intersection.
*
* Valid options:
* point - {Boolean} Return the intersection point. If false, the actual
* intersection point will not be calculated. If true and the segments
* intersect, the intersection point will be returned. If true and
* the segments do not intersect, false will be returned. If true and
* the segments are coincident, true will be returned.
* tolerance - {Number} If a non-null value is provided, if the segments are
* within the tolerance distance, this will be considered an intersection.
* In addition, if the point option is true and the calculated intersection
* is within the tolerance distance of an end point, the endpoint will be
* returned instead of the calculated intersection. Further, if the
* intersection is within the tolerance of endpoints on both segments, or
* if two segment endpoints are within the tolerance distance of eachother
* (but no intersection is otherwise calculated), an endpoint on the
* first segment provided will be returned.
*
* Returns:
* {Boolean | <OpenLayers.Geometry.Point>} The two segments intersect.
* If the point argument is true, the return will be the intersection
* point or false if none exists. If point is true and the segments
* are coincident, return will be true (and the instersection is equal
* to the shorter segment).
*/
OpenLayers.Geometry.segmentsIntersect = function(seg1, seg2, options) {
var point = options && options.point;
var tolerance = options && options.tolerance;
var intersection = false;
var x11_21 = seg1.x1 - seg2.x1;
var y11_21 = seg1.y1 - seg2.y1;
var x12_11 = seg1.x2 - seg1.x1;
var y12_11 = seg1.y2 - seg1.y1;
var y22_21 = seg2.y2 - seg2.y1;
var x22_21 = seg2.x2 - seg2.x1;
var d = (y22_21 * x12_11) - (x22_21 * y12_11);
var n1 = (x22_21 * y11_21) - (y22_21 * x11_21);
var n2 = (x12_11 * y11_21) - (y12_11 * x11_21);
if(d == 0) {
// parallel
if(n1 == 0 && n2 == 0) {
// coincident
intersection = true;
}
} else {
var along1 = n1 / d;
var along2 = n2 / d;
if(along1 >= 0 && along1 <= 1 && along2 >=0 && along2 <= 1) {
// intersect
if(!point) {
intersection = true;
} else {
// calculate the intersection point
var x = seg1.x1 + (along1 * x12_11);
var y = seg1.y1 + (along1 * y12_11);
intersection = new OpenLayers.Geometry.Point(x, y);
}
}
}
if(tolerance) {
var dist;
if(intersection) {
if(point) {
var segs = [seg1, seg2];
var seg, x, y;
// check segment endpoints for proximity to intersection
// set intersection to first endpoint within the tolerance
outer: for(var i=0; i<2; ++i) {
seg = segs[i];
for(var j=1; j<3; ++j) {
x = seg["x" + j];
y = seg["y" + j];
dist = Math.sqrt(
Math.pow(x - intersection.x, 2) +
Math.pow(y - intersection.y, 2)
);
if(dist < tolerance) {
intersection.x = x;
intersection.y = y;
break outer;
}
}
}
}
} else {
// no calculated intersection, but segments could be within
// the tolerance of one another
var segs = [seg1, seg2];
var source, target, x, y, p, result;
// check segment endpoints for proximity to intersection
// set intersection to first endpoint within the tolerance
outer: for(var i=0; i<2; ++i) {
source = segs[i];
target = segs[(i+1)%2];
for(var j=1; j<3; ++j) {
p = {x: source["x"+j], y: source["y"+j]};
result = OpenLayers.Geometry.distanceToSegment(p, target);
if(result.distance < tolerance) {
if(point) {
intersection = new OpenLayers.Geometry.Point(p.x, p.y);
} else {
intersection = true;
}
break outer;
}
}
}
}
}
return intersection;
};
/**
* Function: OpenLayers.Geometry.distanceToSegment
*
* Parameters:
* point - {Object} An object with x and y properties representing the
* point coordinates.
* segment - {Object} An object with x1, y1, x2, and y2 properties
* representing endpoint coordinates.
*
* Returns:
* {Object} An object with distance, x, and y properties. The distance
* will be the shortest distance between the input point and segment.
* The x and y properties represent the coordinates along the segment
* where the shortest distance meets the segment.
*/
OpenLayers.Geometry.distanceToSegment = function(point, segment) {
var x0 = point.x;
var y0 = point.y;
var x1 = segment.x1;
var y1 = segment.y1;
var x2 = segment.x2;
var y2 = segment.y2;
var dx = x2 - x1;
var dy = y2 - y1;
var along = ((dx * (x0 - x1)) + (dy * (y0 - y1))) /
(Math.pow(dx, 2) + Math.pow(dy, 2));
var x, y;
if(along <= 0.0) {
x = x1;
y = y1;
} else if(along >= 1.0) {
x = x2;
y = y2;
} else {
x = x1 + along * dx;
y = y1 + along * dy;
}
return {
distance: Math.sqrt(Math.pow(x - x0, 2) + Math.pow(y - y0, 2)),
x: x, y: y
};
};