Utilize the numerical shifting during reprojection to easily reduce complexity of the linear system that needs to be solved.
244 lines
8.9 KiB
JavaScript
244 lines
8.9 KiB
JavaScript
goog.provide('ol.reproj');
|
|
|
|
goog.require('goog.array');
|
|
goog.require('goog.math');
|
|
goog.require('ol.dom');
|
|
goog.require('ol.extent');
|
|
goog.require('ol.math');
|
|
goog.require('ol.proj');
|
|
|
|
|
|
/**
|
|
* Calculates ideal resolution to use from the source in order to achieve
|
|
* pixel mapping as close as possible to 1:1 during reprojection.
|
|
* The resolution is calculated regardless on what resolutions
|
|
* are actually available in the dataset (TileGrid, Image, ...).
|
|
*
|
|
* @param {ol.proj.Projection} sourceProj
|
|
* @param {ol.proj.Projection} targetProj
|
|
* @param {ol.Coordinate} targetCenter
|
|
* @param {number} targetResolution
|
|
* @return {number} The best resolution to use. Can be +-Infinity, NaN or 0.
|
|
*/
|
|
ol.reproj.calculateSourceResolution = function(sourceProj, targetProj,
|
|
targetCenter, targetResolution) {
|
|
|
|
var sourceCenter = ol.proj.transform(targetCenter, targetProj, sourceProj);
|
|
|
|
// calculate the ideal resolution of the source data
|
|
var sourceResolution =
|
|
targetProj.getPointResolution(targetResolution, targetCenter) *
|
|
targetProj.getMetersPerUnit() / sourceProj.getMetersPerUnit();
|
|
|
|
// based on the projection properties, the point resolution at the specified
|
|
// coordinates may be slightly different. We need to reverse-compensate this
|
|
// in order to achieve optimal results.
|
|
|
|
var compensationFactor =
|
|
sourceProj.getPointResolution(sourceResolution, sourceCenter) /
|
|
sourceResolution;
|
|
|
|
if (goog.math.isFiniteNumber(compensationFactor) && compensationFactor > 0) {
|
|
sourceResolution /= compensationFactor;
|
|
}
|
|
|
|
return sourceResolution;
|
|
};
|
|
|
|
|
|
/**
|
|
* Renders the source into the canvas based on the triangulation.
|
|
* @param {CanvasRenderingContext2D} context
|
|
* @param {number} sourceResolution
|
|
* @param {ol.Extent} sourceExtent
|
|
* @param {number} targetResolution
|
|
* @param {ol.Extent} targetExtent
|
|
* @param {ol.reproj.Triangulation} triangulation
|
|
* @param {Array.<{extent: ol.Extent,
|
|
* image: (HTMLCanvasElement|Image)}>} sources
|
|
*/
|
|
ol.reproj.renderTriangles = function(context,
|
|
sourceResolution, sourceExtent, targetResolution, targetExtent,
|
|
triangulation, sources) {
|
|
|
|
var wrapXShiftDistance = !goog.isNull(sourceExtent) ?
|
|
ol.extent.getWidth(sourceExtent) : 0;
|
|
|
|
var wrapXShiftNeeded = triangulation.getWrapsXInSource() &&
|
|
(wrapXShiftDistance > 0);
|
|
|
|
// If possible, stitch the sources shifted to solve the wrapX issue here.
|
|
// This is not possible if crossing both "dateline" and "prime meridian".
|
|
var performGlobalWrapXShift = false;
|
|
if (wrapXShiftNeeded) {
|
|
var triangulationSrcExtent = triangulation.calculateSourceExtent();
|
|
var triangulationSrcWidth = goog.math.modulo(
|
|
ol.extent.getWidth(triangulationSrcExtent), wrapXShiftDistance);
|
|
performGlobalWrapXShift = triangulationSrcWidth < wrapXShiftDistance / 2;
|
|
}
|
|
|
|
var srcDataExtent = ol.extent.createEmpty();
|
|
goog.array.forEach(sources, function(src, i, arr) {
|
|
if (performGlobalWrapXShift) {
|
|
var srcW = src.extent[2] - src.extent[0];
|
|
var srcX = goog.math.modulo(src.extent[0], wrapXShiftDistance);
|
|
ol.extent.extend(srcDataExtent, [srcX, src.extent[1],
|
|
srcX + srcW, src.extent[3]]);
|
|
} else {
|
|
ol.extent.extend(srcDataExtent, src.extent);
|
|
}
|
|
});
|
|
if (!goog.isNull(sourceExtent)) {
|
|
if (wrapXType == ol.reproj.WrapXRendering_.NONE) {
|
|
srcDataExtent[0] = goog.math.clamp(
|
|
srcDataExtent[0], sourceExtent[0], sourceExtent[2]);
|
|
srcDataExtent[2] = goog.math.clamp(
|
|
srcDataExtent[2], sourceExtent[0], sourceExtent[2]);
|
|
}
|
|
srcDataExtent[1] = goog.math.clamp(
|
|
srcDataExtent[1], sourceExtent[1], sourceExtent[3]);
|
|
srcDataExtent[3] = goog.math.clamp(
|
|
srcDataExtent[3], sourceExtent[1], sourceExtent[3]);
|
|
}
|
|
|
|
var srcDataWidth = ol.extent.getWidth(srcDataExtent);
|
|
var srcDataHeight = ol.extent.getHeight(srcDataExtent);
|
|
var stitchContext = ol.dom.createCanvasContext2D(
|
|
Math.ceil(srcDataWidth / sourceResolution),
|
|
Math.ceil(srcDataHeight / sourceResolution));
|
|
|
|
stitchContext.scale(1 / sourceResolution, 1 / sourceResolution);
|
|
stitchContext.translate(-srcDataExtent[0], srcDataExtent[3]);
|
|
|
|
goog.array.forEach(sources, function(src, i, arr) {
|
|
var xPos = performGlobalWrapXShift ?
|
|
goog.math.modulo(src.extent[0], wrapXShiftDistance) : src.extent[0];
|
|
stitchContext.drawImage(src.image, xPos, -src.extent[3],
|
|
src.extent[2] - src.extent[0], src.extent[3] - src.extent[1]);
|
|
});
|
|
|
|
var targetTL = ol.extent.getTopLeft(targetExtent);
|
|
|
|
goog.array.forEach(triangulation.getTriangles(), function(tri, i, arr) {
|
|
context.save();
|
|
|
|
/* Calculate affine transform (src -> dst)
|
|
* Resulting matrix can be used to transform coordinate
|
|
* from `sourceProjection` to destination pixels.
|
|
*
|
|
* To optimize number of context calls and increase numerical stability,
|
|
* we also do the following operations:
|
|
* trans(-topLeftExtentCorner), scale(1 / targetResolution), scale(1, -1)
|
|
* here before solving the linear system.
|
|
*
|
|
* Src points: xi, yi
|
|
* Dst points: ui, vi
|
|
* Affine coefficients: aij
|
|
*
|
|
* | x0 y0 1 0 0 0 | |a00| |u0|
|
|
* | x1 y1 1 0 0 0 | |a01| |u1|
|
|
* | x2 y2 1 0 0 0 | x |a02| = |u2|
|
|
* | 0 0 0 x0 y0 1 | |a10| |v0|
|
|
* | 0 0 0 x1 y1 1 | |a11| |v1|
|
|
* | 0 0 0 x2 y2 1 | |a12| |v2|
|
|
*/
|
|
var src = tri.source, tgt = tri.target;
|
|
var x0 = src[0][0], y0 = src[0][1],
|
|
x1 = src[1][0], y1 = src[1][1],
|
|
x2 = src[2][0], y2 = src[2][1];
|
|
var u0 = tgt[0][0] - targetTL[0], v0 = -(tgt[0][1] - targetTL[1]),
|
|
u1 = tgt[1][0] - targetTL[0], v1 = -(tgt[1][1] - targetTL[1]),
|
|
u2 = tgt[2][0] - targetTL[0], v2 = -(tgt[2][1] - targetTL[1]);
|
|
|
|
var performIndividualWrapXShift = !performGlobalWrapXShift &&
|
|
(wrapXShiftNeeded &&
|
|
(Math.max(x0, x1, x2) - Math.min(x0, x1, x2)) > wrapXShiftDistance / 2);
|
|
|
|
if (performGlobalWrapXShift || performIndividualWrapXShift) {
|
|
x0 = goog.math.modulo(x0, wrapXShiftDistance);
|
|
x1 = goog.math.modulo(x1, wrapXShiftDistance);
|
|
x2 = goog.math.modulo(x2, wrapXShiftDistance);
|
|
}
|
|
|
|
// Shift all the source points to improve numerical stability
|
|
// of all the subsequent calculations. The [x0, y0] is used here.
|
|
// This is also used to simplify the linear system.
|
|
var srcNumericalShiftX = x0, srcNumericalShiftY = y0;
|
|
x0 = 0;
|
|
y0 = 0;
|
|
x1 -= srcNumericalShiftX;
|
|
y1 -= srcNumericalShiftY;
|
|
x2 -= srcNumericalShiftX;
|
|
y2 -= srcNumericalShiftY;
|
|
|
|
var augmentedMatrix = [
|
|
[x1, y1, 0, 0, (u1 - u0) / targetResolution],
|
|
[x2, y2, 0, 0, (u2 - u0) / targetResolution],
|
|
[0, 0, x1, y1, (v1 - v0) / targetResolution],
|
|
[0, 0, x2, y2, (v2 - v0) / targetResolution]
|
|
];
|
|
var coefs = ol.math.solveLinearSystem(augmentedMatrix);
|
|
if (goog.isNull(coefs)) {
|
|
return;
|
|
}
|
|
|
|
context.setTransform(coefs[0], coefs[2], coefs[1], coefs[3],
|
|
u0 / targetResolution, v0 / targetResolution);
|
|
|
|
var pixelSize = sourceResolution;
|
|
var centroid = [(x0 + x1 + x2) / 3, (y0 + y1 + y2) / 3];
|
|
|
|
// moves the `point` farther away from the `anchor`
|
|
var increasePointDistance = function(point, anchor, increment) {
|
|
var dir = [point[0] - anchor[0], point[1] - anchor[1]];
|
|
var distance = Math.sqrt(dir[0] * dir[0] + dir[1] * dir[1]);
|
|
var scaleFactor = (distance + increment) / distance;
|
|
return [anchor[0] + scaleFactor * dir[0],
|
|
anchor[1] + scaleFactor * dir[1]];
|
|
};
|
|
|
|
// enlarge the triangle so that the clip paths of individual triangles
|
|
// slightly (1px) overlap to prevent transparency errors on triangle edges
|
|
var p0 = increasePointDistance([x0, y0], centroid, pixelSize);
|
|
var p1 = increasePointDistance([x1, y1], centroid, pixelSize);
|
|
var p2 = increasePointDistance([x2, y2], centroid, pixelSize);
|
|
|
|
context.beginPath();
|
|
context.moveTo(p0[0], p0[1]);
|
|
context.lineTo(p1[0], p1[1]);
|
|
context.lineTo(p2[0], p2[1]);
|
|
context.closePath();
|
|
context.clip();
|
|
|
|
context.save();
|
|
context.translate(srcDataExtent[0] - srcNumericalShiftX,
|
|
srcDataExtent[3] - srcNumericalShiftY);
|
|
|
|
context.scale(sourceResolution, -sourceResolution);
|
|
|
|
context.drawImage(stitchContext.canvas, 0, 0);
|
|
|
|
if (performIndividualWrapXShift) {
|
|
// It was not possible to solve the wrapX shifting during stitching ->
|
|
// render the data second time (shifted) to solve the wrapX.
|
|
context.translate(wrapXShiftDistance / sourceResolution, 0);
|
|
context.drawImage(stitchContext.canvas, 0, 0);
|
|
}
|
|
|
|
context.restore();
|
|
|
|
if (goog.DEBUG) {
|
|
context.strokeStyle = 'black';
|
|
context.lineWidth = 2 * pixelSize;
|
|
context.beginPath();
|
|
context.moveTo(x0, y0);
|
|
context.lineTo(x1, y1);
|
|
context.lineTo(x2, y2);
|
|
context.closePath();
|
|
context.stroke();
|
|
}
|
|
|
|
context.restore();
|
|
});
|
|
};
|