Files
openlayers/src/ol/renderer/webgl/Layer.js

287 lines
9.2 KiB
JavaScript

/**
* @module ol/renderer/webgl/Layer
*/
import LayerRenderer from '../Layer.js';
import RenderEvent from '../../render/Event.js';
import RenderEventType from '../../render/EventType.js';
import WebGLHelper from '../../webgl/Helper.js';
import {
compose as composeTransform,
create as createTransform,
} from '../../transform.js';
/**
* @enum {string}
*/
export const WebGLWorkerMessageType = {
GENERATE_BUFFERS: 'GENERATE_BUFFERS',
};
/**
* @typedef {Object} WebGLWorkerGenerateBuffersMessage
* This message will trigger the generation of a vertex and an index buffer based on the given render instructions.
* When the buffers are generated, the worked will send a message of the same type to the main thread, with
* the generated buffers in it.
* Note that any addition properties present in the message *will* be sent back to the main thread.
* @property {WebGLWorkerMessageType} type Message type
* @property {ArrayBuffer} renderInstructions Render instructions raw binary buffer.
* @property {ArrayBuffer} [vertexBuffer] Vertices array raw binary buffer (sent by the worker).
* @property {ArrayBuffer} [indexBuffer] Indices array raw binary buffer (sent by the worker).
* @property {number} [customAttributesCount] Amount of custom attributes count in the render instructions.
*/
/**
* @typedef {Object} PostProcessesOptions
* @property {number} [scaleRatio] Scale ratio; if < 1, the post process will render to a texture smaller than
* the main canvas that will then be sampled up (useful for saving resource on blur steps).
* @property {string} [vertexShader] Vertex shader source
* @property {string} [fragmentShader] Fragment shader source
* @property {Object<string,import("../../webgl/Helper").UniformValue>} [uniforms] Uniform definitions for the post process step
*/
/**
* @typedef {Object} Options
* @property {string} [className='ol-layer'] A CSS class name to set to the canvas element.
* @property {Object<string,import("../../webgl/Helper").UniformValue>} [uniforms] Uniform definitions for the post process steps
* @property {Array<PostProcessesOptions>} [postProcesses] Post-processes definitions
*/
/**
* @classdesc
* Base WebGL renderer class.
* Holds all logic related to data manipulation & some common rendering logic
* @template {import("../../layer/Layer.js").default} LayerType
*/
class WebGLLayerRenderer extends LayerRenderer {
/**
* @param {LayerType} layer Layer.
* @param {Options} [opt_options] Options.
*/
constructor(layer, opt_options) {
super(layer);
const options = opt_options || {};
/**
* The transform for viewport CSS pixels to rendered pixels. This transform is only
* set before dispatching rendering events.
* @private
* @type {import("../../transform.js").Transform}
*/
this.inversePixelTransform_ = createTransform();
/**
* @type {WebGLHelper}
* @protected
*/
this.helper = new WebGLHelper({
postProcesses: options.postProcesses,
uniforms: options.uniforms,
});
if (options.className !== undefined) {
this.helper.getCanvas().className = options.className;
}
}
/**
* Clean up.
*/
disposeInternal() {
this.helper.dispose();
delete this.helper;
super.disposeInternal();
}
/**
* @param {import("../../render/EventType.js").default} type Event type.
* @param {WebGLRenderingContext} context The rendering context.
* @param {import("../../PluggableMap.js").FrameState} frameState Frame state.
* @private
*/
dispatchRenderEvent_(type, context, frameState) {
const layer = this.getLayer();
if (layer.hasListener(type)) {
composeTransform(
this.inversePixelTransform_,
0,
0,
frameState.pixelRatio,
-frameState.pixelRatio,
0,
0,
-frameState.size[1]
);
const event = new RenderEvent(
type,
this.inversePixelTransform_,
frameState,
context
);
layer.dispatchEvent(event);
}
}
/**
* @param {WebGLRenderingContext} context The rendering context.
* @param {import("../../PluggableMap.js").FrameState} frameState Frame state.
* @protected
*/
preRender(context, frameState) {
this.dispatchRenderEvent_(RenderEventType.PRERENDER, context, frameState);
}
/**
* @param {WebGLRenderingContext} context The rendering context.
* @param {import("../../PluggableMap.js").FrameState} frameState Frame state.
* @protected
*/
postRender(context, frameState) {
this.dispatchRenderEvent_(RenderEventType.POSTRENDER, context, frameState);
}
}
const tmpArray_ = [];
const bufferPositions_ = {vertexPosition: 0, indexPosition: 0};
function writePointVertex(buffer, pos, x, y, index) {
buffer[pos + 0] = x;
buffer[pos + 1] = y;
buffer[pos + 2] = index;
}
/**
* An object holding positions both in an index and a vertex buffer.
* @typedef {Object} BufferPositions
* @property {number} vertexPosition Position in the vertex buffer
* @property {number} indexPosition Position in the index buffer
*/
/**
* Pushes a quad (two triangles) based on a point geometry
* @param {Float32Array} instructions Array of render instructions for points.
* @param {number} elementIndex Index from which render instructions will be read.
* @param {Float32Array} vertexBuffer Buffer in the form of a typed array.
* @param {Uint32Array} indexBuffer Buffer in the form of a typed array.
* @param {number} customAttributesCount Amount of custom attributes for each element.
* @param {BufferPositions} [bufferPositions] Buffer write positions; if not specified, positions will be set at 0.
* @return {BufferPositions} New buffer positions where to write next
* @property {number} vertexPosition New position in the vertex buffer where future writes should start.
* @property {number} indexPosition New position in the index buffer where future writes should start.
* @private
*/
export function writePointFeatureToBuffers(
instructions,
elementIndex,
vertexBuffer,
indexBuffer,
customAttributesCount,
bufferPositions
) {
// This is for x, y and index
const baseVertexAttrsCount = 3;
const baseInstructionsCount = 2;
const stride = baseVertexAttrsCount + customAttributesCount;
const x = instructions[elementIndex + 0];
const y = instructions[elementIndex + 1];
// read custom numerical attributes on the feature
const customAttrs = tmpArray_;
customAttrs.length = customAttributesCount;
for (let i = 0; i < customAttrs.length; i++) {
customAttrs[i] = instructions[elementIndex + baseInstructionsCount + i];
}
let vPos = bufferPositions ? bufferPositions.vertexPosition : 0;
let iPos = bufferPositions ? bufferPositions.indexPosition : 0;
const baseIndex = vPos / stride;
// push vertices for each of the four quad corners (first standard then custom attributes)
writePointVertex(vertexBuffer, vPos, x, y, 0);
customAttrs.length &&
vertexBuffer.set(customAttrs, vPos + baseVertexAttrsCount);
vPos += stride;
writePointVertex(vertexBuffer, vPos, x, y, 1);
customAttrs.length &&
vertexBuffer.set(customAttrs, vPos + baseVertexAttrsCount);
vPos += stride;
writePointVertex(vertexBuffer, vPos, x, y, 2);
customAttrs.length &&
vertexBuffer.set(customAttrs, vPos + baseVertexAttrsCount);
vPos += stride;
writePointVertex(vertexBuffer, vPos, x, y, 3);
customAttrs.length &&
vertexBuffer.set(customAttrs, vPos + baseVertexAttrsCount);
vPos += stride;
indexBuffer[iPos++] = baseIndex;
indexBuffer[iPos++] = baseIndex + 1;
indexBuffer[iPos++] = baseIndex + 3;
indexBuffer[iPos++] = baseIndex + 1;
indexBuffer[iPos++] = baseIndex + 2;
indexBuffer[iPos++] = baseIndex + 3;
bufferPositions_.vertexPosition = vPos;
bufferPositions_.indexPosition = iPos;
return bufferPositions_;
}
/**
* Returns a texture of 1x1 pixel, white
* @private
* @return {ImageData} Image data.
*/
export function getBlankImageData() {
const canvas = document.createElement('canvas');
const image = canvas.getContext('2d').createImageData(1, 1);
image.data[0] = 255;
image.data[1] = 255;
image.data[2] = 255;
image.data[3] = 255;
return image;
}
/**
* Generates a color array based on a numerical id
* Note: the range for each component is 0 to 1 with 256 steps
* @param {number} id Id
* @param {Array<number>} [opt_array] Reusable array
* @return {Array<number>} Color array containing the encoded id
*/
export function colorEncodeId(id, opt_array) {
const array = opt_array || [];
const radix = 256;
const divide = radix - 1;
array[0] = Math.floor(id / radix / radix / radix) / divide;
array[1] = (Math.floor(id / radix / radix) % radix) / divide;
array[2] = (Math.floor(id / radix) % radix) / divide;
array[3] = (id % radix) / divide;
return array;
}
/**
* Reads an id from a color-encoded array
* Note: the expected range for each component is 0 to 1 with 256 steps.
* @param {Array<number>} color Color array containing the encoded id
* @return {number} Decoded id
*/
export function colorDecodeId(color) {
let id = 0;
const radix = 256;
const mult = radix - 1;
id += Math.round(color[0] * radix * radix * radix * mult);
id += Math.round(color[1] * radix * radix * mult);
id += Math.round(color[2] * radix * mult);
id += Math.round(color[3] * mult);
return id;
}
export default WebGLLayerRenderer;