298 lines
8.8 KiB
JavaScript
298 lines
8.8 KiB
JavaScript
/**
|
|
* Copyright 2000, Silicon Graphics, Inc. All Rights Reserved.
|
|
* Copyright 2012, Google Inc. All Rights Reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to
|
|
* deal in the Software without restriction, including without limitation the
|
|
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
|
* sell copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice including the dates of first publication and
|
|
* either this permission notice or a reference to http://oss.sgi.com/projects/FreeB/
|
|
* shall be included in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* SILICON GRAPHICS, INC. BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
|
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
|
|
* IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
* Original Code. The Original Code is: OpenGL Sample Implementation,
|
|
* Version 1.2.1, released January 26, 2000, developed by Silicon Graphics,
|
|
* Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc.
|
|
* Copyright in any portions created by third parties is as indicated
|
|
* elsewhere herein. All Rights Reserved.
|
|
*/
|
|
|
|
/**
|
|
* @author ericv@cs.stanford.edu (Eric Veach)
|
|
* @author bckenny@google.com (Brendan Kenny)
|
|
*/
|
|
|
|
// require libtess
|
|
// require libtess.GluTesselator
|
|
/*global libtess */
|
|
|
|
goog.provide('libtess.normal');
|
|
goog.require('libtess');
|
|
|
|
|
|
// TODO(bckenny): NOTE:
|
|
/* The "feature merging" is not intended to be complete. There are
|
|
* special cases where edges are nearly parallel to the sweep line
|
|
* which are not implemented. The algorithm should still behave
|
|
* robustly (ie. produce a reasonable tesselation) in the presence
|
|
* of such edges, however it may miss features which could have been
|
|
* merged. We could minimize this effect by choosing the sweep line
|
|
* direction to be something unusual (ie. not parallel to one of the
|
|
* coordinate axes).
|
|
*/
|
|
/*#if defined(SLANTED_SWEEP)
|
|
#define S_UNIT_X 0.50941539564955385 // Pre-normalized
|
|
#define S_UNIT_Y 0.86052074622010633
|
|
#endif
|
|
*/
|
|
/**
|
|
* @type {number}
|
|
* @private
|
|
* @const
|
|
*/
|
|
libtess.normal.S_UNIT_X_ = 1.0;
|
|
|
|
|
|
/**
|
|
* @type {number}
|
|
* @private
|
|
* @const
|
|
*/
|
|
libtess.normal.S_UNIT_Y_ = 0.0;
|
|
|
|
|
|
/**
|
|
* projectPolygon determines the polygon normal
|
|
* and projects vertices onto the plane of the polygon.
|
|
*
|
|
* @param {libtess.GluTesselator} tess [description].
|
|
*/
|
|
libtess.normal.projectPolygon = function(tess) {
|
|
var computedNormal = false;
|
|
|
|
var norm = [0, 0, 0];
|
|
norm[0] = tess.normal[0]; // TODO(bckenny): better way to init these?
|
|
norm[1] = tess.normal[1];
|
|
norm[2] = tess.normal[2];
|
|
if (norm[0] === 0 && norm[1] === 0 && norm[2] === 0) {
|
|
libtess.normal.computeNormal_(tess, norm);
|
|
computedNormal = true;
|
|
}
|
|
|
|
var sUnit = tess.sUnit;
|
|
var tUnit = tess.tUnit;
|
|
var i = libtess.normal.longAxis_(norm);
|
|
|
|
if (libtess.TRUE_PROJECT) {
|
|
// Choose the initial sUnit vector to be approximately perpendicular
|
|
// to the normal.
|
|
libtess.normal.normalize_(norm);
|
|
|
|
sUnit[i] = 0;
|
|
sUnit[(i + 1) % 3] = libtess.normal.S_UNIT_X_;
|
|
sUnit[(i + 2) % 3] = libtess.normal.S_UNIT_Y_;
|
|
|
|
// Now make it exactly perpendicular
|
|
var w = libtess.normal.dot_(sUnit, norm);
|
|
sUnit[0] -= w * norm[0];
|
|
sUnit[1] -= w * norm[1];
|
|
sUnit[2] -= w * norm[2];
|
|
libtess.normal.normalize_(sUnit);
|
|
|
|
// Choose tUnit so that (sUnit,tUnit,norm) form a right-handed frame
|
|
tUnit[0] = norm[1] * sUnit[2] - norm[2] * sUnit[1];
|
|
tUnit[1] = norm[2] * sUnit[0] - norm[0] * sUnit[2];
|
|
tUnit[2] = norm[0] * sUnit[1] - norm[1] * sUnit[0];
|
|
libtess.normal.normalize_(tUnit);
|
|
|
|
} else {
|
|
// Project perpendicular to a coordinate axis -- better numerically
|
|
sUnit[i] = 0;
|
|
sUnit[(i + 1) % 3] = libtess.normal.S_UNIT_X_;
|
|
sUnit[(i + 2) % 3] = libtess.normal.S_UNIT_Y_;
|
|
|
|
tUnit[i] = 0;
|
|
tUnit[(i + 1) % 3] = (norm[i] > 0) ? -libtess.normal.S_UNIT_Y_ : libtess.normal.S_UNIT_Y_;
|
|
tUnit[(i + 2) % 3] = (norm[i] > 0) ? libtess.normal.S_UNIT_X_ : -libtess.normal.S_UNIT_X_;
|
|
}
|
|
|
|
// Project the vertices onto the sweep plane
|
|
var vHead = tess.mesh.vHead;
|
|
for (var v = vHead.next; v !== vHead; v = v.next) {
|
|
v.s = libtess.normal.dot_(v.coords, sUnit);
|
|
v.t = libtess.normal.dot_(v.coords, tUnit);
|
|
}
|
|
|
|
if (computedNormal) {
|
|
libtess.normal.checkOrientation_(tess);
|
|
}
|
|
};
|
|
|
|
|
|
/**
|
|
* Dot product.
|
|
* @private
|
|
* @param {Array.<number>} u [description].
|
|
* @param {Array.<number>} v [description].
|
|
* @return {number} [description].
|
|
*/
|
|
libtess.normal.dot_ = function(u, v) {
|
|
return u[0] * v[0] + u[1] * v[1] + u[2] * v[2];
|
|
};
|
|
|
|
|
|
/**
|
|
* Normalize vector v
|
|
* @private
|
|
* @param {Array.<number>} v [description].
|
|
*/
|
|
libtess.normal.normalize_ = function(v) {
|
|
var len = v[0] * v[0] + v[1] * v[1] + v[2] * v[2];
|
|
|
|
libtess.assert(len > 0);
|
|
len = Math.sqrt(len);
|
|
v[0] /= len;
|
|
v[1] /= len;
|
|
v[2] /= len;
|
|
};
|
|
|
|
|
|
/**
|
|
* Returns the index of the longest component of vector v.
|
|
* @private
|
|
* @param {Array.<number>} v [description].
|
|
* @return {number} The index of the longest component.
|
|
*/
|
|
libtess.normal.longAxis_ = function(v) {
|
|
var i = 0;
|
|
|
|
if (Math.abs(v[1]) > Math.abs(v[0])) {
|
|
i = 1;
|
|
}
|
|
if (Math.abs(v[2]) > Math.abs(v[i])) {
|
|
i = 2;
|
|
}
|
|
|
|
return i;
|
|
};
|
|
|
|
|
|
/**
|
|
* [computeNormal description]
|
|
*
|
|
* @private
|
|
* @param {libtess.GluTesselator} tess [description].
|
|
* @param {Array.<number>} norm [description].
|
|
*/
|
|
libtess.normal.computeNormal_ = function(tess, norm) {
|
|
// TODO(bckenny): better way to init these
|
|
// TODO(bckenny): can pool these, but only called once per poly
|
|
var maxVal = [0, 0, 0];
|
|
var minVal = [0, 0, 0];
|
|
var d1 = [0, 0, 0];
|
|
var d2 = [0, 0, 0];
|
|
var tNorm = [0, 0, 0];
|
|
|
|
maxVal[0] = maxVal[1] = maxVal[2] = -2 * libtess.GLU_TESS_MAX_COORD;
|
|
minVal[0] = minVal[1] = minVal[2] = 2 * libtess.GLU_TESS_MAX_COORD;
|
|
|
|
// TODO(bckenny): better way to init these
|
|
var maxVert = new Array(3);
|
|
var minVert = new Array(3);
|
|
|
|
var i;
|
|
var v;
|
|
var vHead = tess.mesh.vHead;
|
|
for (v = vHead.next; v !== vHead; v = v.next) {
|
|
for (i = 0; i < 3; ++i) {
|
|
var c = v.coords[i];
|
|
if (c < minVal[i]) { minVal[i] = c; minVert[i] = v; }
|
|
if (c > maxVal[i]) { maxVal[i] = c; maxVert[i] = v; }
|
|
}
|
|
}
|
|
|
|
// Find two vertices separated by at least 1/sqrt(3) of the maximum
|
|
// distance between any two vertices
|
|
i = 0;
|
|
if (maxVal[1] - minVal[1] > maxVal[0] - minVal[0]) { i = 1; }
|
|
if (maxVal[2] - minVal[2] > maxVal[i] - minVal[i]) { i = 2; }
|
|
if (minVal[i] >= maxVal[i]) {
|
|
// All vertices are the same -- normal doesn't matter
|
|
norm[0] = 0; norm[1] = 0; norm[2] = 1;
|
|
return;
|
|
}
|
|
|
|
// Look for a third vertex which forms the triangle with maximum area
|
|
// (Length of normal == twice the triangle area)
|
|
var maxLen2 = 0;
|
|
var v1 = minVert[i];
|
|
var v2 = maxVert[i];
|
|
d1[0] = v1.coords[0] - v2.coords[0];
|
|
d1[1] = v1.coords[1] - v2.coords[1];
|
|
d1[2] = v1.coords[2] - v2.coords[2];
|
|
for (v = vHead.next; v !== vHead; v = v.next) {
|
|
d2[0] = v.coords[0] - v2.coords[0];
|
|
d2[1] = v.coords[1] - v2.coords[1];
|
|
d2[2] = v.coords[2] - v2.coords[2];
|
|
tNorm[0] = d1[1] * d2[2] - d1[2] * d2[1];
|
|
tNorm[1] = d1[2] * d2[0] - d1[0] * d2[2];
|
|
tNorm[2] = d1[0] * d2[1] - d1[1] * d2[0];
|
|
var tLen2 = tNorm[0] * tNorm[0] + tNorm[1] * tNorm[1] + tNorm[2] * tNorm[2];
|
|
if (tLen2 > maxLen2) {
|
|
maxLen2 = tLen2;
|
|
norm[0] = tNorm[0];
|
|
norm[1] = tNorm[1];
|
|
norm[2] = tNorm[2];
|
|
}
|
|
}
|
|
|
|
if (maxLen2 <= 0) {
|
|
// All points lie on a single line -- any decent normal will do
|
|
norm[0] = norm[1] = norm[2] = 0;
|
|
norm[libtess.normal.longAxis_(d1)] = 1;
|
|
}
|
|
};
|
|
|
|
|
|
/**
|
|
* [checkOrientation description]
|
|
*
|
|
* @private
|
|
* @param {libtess.GluTesselator} tess [description].
|
|
*/
|
|
libtess.normal.checkOrientation_ = function(tess) {
|
|
// When we compute the normal automatically, we choose the orientation
|
|
// so that the the sum of the signed areas of all contours is non-negative.
|
|
var area = 0;
|
|
var fHead = tess.mesh.fHead;
|
|
for (var f = fHead.next; f !== fHead; f = f.next) {
|
|
var e = f.anEdge;
|
|
if (e.winding <= 0) { continue; }
|
|
do {
|
|
area += (e.org.s - e.dst().s) * (e.org.t + e.dst().t);
|
|
e = e.lNext;
|
|
} while (e !== f.anEdge);
|
|
}
|
|
|
|
if (area < 0) {
|
|
// Reverse the orientation by flipping all the t-coordinates
|
|
var vHead = tess.mesh.vHead;
|
|
for (var v = vHead.next; v !== vHead; v = v.next) {
|
|
v.t = - v.t;
|
|
}
|
|
tess.tUnit[0] = -tess.tUnit[0];
|
|
tess.tUnit[1] = -tess.tUnit[1];
|
|
tess.tUnit[2] = -tess.tUnit[2];
|
|
}
|
|
};
|