Files
openlayers/lib/OpenLayers/Geometry/LinearRing.js
ahocevar cc2e19d789 added support for text labels. This also adds getCentroid methods to all
geometries. Thanks crschmidt for the great help with this patch, and 
thanks to camptocamp for the initial work on this and rcoup for creating 
the first patches. r=crschmidt (closes #1895)


git-svn-id: http://svn.openlayers.org/trunk/openlayers@9262 dc9f47b5-9b13-0410-9fdd-eb0c1a62fdaf
2009-04-10 16:05:26 +00:00

415 lines
15 KiB
JavaScript

/* Copyright (c) 2006-2008 MetaCarta, Inc., published under the Clear BSD
* license. See http://svn.openlayers.org/trunk/openlayers/license.txt for the
* full text of the license. */
/**
* @requires OpenLayers/Geometry/LineString.js
*/
/**
* Class: OpenLayers.Geometry.LinearRing
*
* A Linear Ring is a special LineString which is closed. It closes itself
* automatically on every addPoint/removePoint by adding a copy of the first
* point as the last point.
*
* Also, as it is the first in the line family to close itself, a getArea()
* function is defined to calculate the enclosed area of the linearRing
*
* Inherits:
* - <OpenLayers.Geometry.LineString>
*/
OpenLayers.Geometry.LinearRing = OpenLayers.Class(
OpenLayers.Geometry.LineString, {
/**
* Property: componentTypes
* {Array(String)} An array of class names representing the types of
* components that the collection can include. A null
* value means the component types are not restricted.
*/
componentTypes: ["OpenLayers.Geometry.Point"],
/**
* Constructor: OpenLayers.Geometry.LinearRing
* Linear rings are constructed with an array of points. This array
* can represent a closed or open ring. If the ring is open (the last
* point does not equal the first point), the constructor will close
* the ring. If the ring is already closed (the last point does equal
* the first point), it will be left closed.
*
* Parameters:
* points - {Array(<OpenLayers.Geometry.Point>)} points
*/
initialize: function(points) {
OpenLayers.Geometry.LineString.prototype.initialize.apply(this,
arguments);
},
/**
* APIMethod: addComponent
* Adds a point to geometry components. If the point is to be added to
* the end of the components array and it is the same as the last point
* already in that array, the duplicate point is not added. This has
* the effect of closing the ring if it is not already closed, and
* doing the right thing if it is already closed. This behavior can
* be overridden by calling the method with a non-null index as the
* second argument.
*
* Parameter:
* point - {<OpenLayers.Geometry.Point>}
* index - {Integer} Index into the array to insert the component
*
* Returns:
* {Boolean} Was the Point successfully added?
*/
addComponent: function(point, index) {
var added = false;
//remove last point
var lastPoint = this.components.pop();
// given an index, add the point
// without an index only add non-duplicate points
if(index != null || !point.equals(lastPoint)) {
added = OpenLayers.Geometry.Collection.prototype.addComponent.apply(this,
arguments);
}
//append copy of first point
var firstPoint = this.components[0];
OpenLayers.Geometry.Collection.prototype.addComponent.apply(this,
[firstPoint]);
return added;
},
/**
* APIMethod: removeComponent
* Removes a point from geometry components.
*
* Parameters:
* point - {<OpenLayers.Geometry.Point>}
*/
removeComponent: function(point) {
if (this.components.length > 4) {
//remove last point
this.components.pop();
//remove our point
OpenLayers.Geometry.Collection.prototype.removeComponent.apply(this,
arguments);
//append copy of first point
var firstPoint = this.components[0];
OpenLayers.Geometry.Collection.prototype.addComponent.apply(this,
[firstPoint]);
}
},
/**
* APIMethod: move
* Moves a geometry by the given displacement along positive x and y axes.
* This modifies the position of the geometry and clears the cached
* bounds.
*
* Parameters:
* x - {Float} Distance to move geometry in positive x direction.
* y - {Float} Distance to move geometry in positive y direction.
*/
move: function(x, y) {
for(var i = 0, len=this.components.length; i<len - 1; i++) {
this.components[i].move(x, y);
}
},
/**
* APIMethod: rotate
* Rotate a geometry around some origin
*
* Parameters:
* angle - {Float} Rotation angle in degrees (measured counterclockwise
* from the positive x-axis)
* origin - {<OpenLayers.Geometry.Point>} Center point for the rotation
*/
rotate: function(angle, origin) {
for(var i=0, len=this.components.length; i<len - 1; ++i) {
this.components[i].rotate(angle, origin);
}
},
/**
* APIMethod: resize
* Resize a geometry relative to some origin. Use this method to apply
* a uniform scaling to a geometry.
*
* Parameters:
* scale - {Float} Factor by which to scale the geometry. A scale of 2
* doubles the size of the geometry in each dimension
* (lines, for example, will be twice as long, and polygons
* will have four times the area).
* origin - {<OpenLayers.Geometry.Point>} Point of origin for resizing
* ratio - {Float} Optional x:y ratio for resizing. Default ratio is 1.
*
* Returns:
* {OpenLayers.Geometry} - The current geometry.
*/
resize: function(scale, origin, ratio) {
for(var i=0, len=this.components.length; i<len - 1; ++i) {
this.components[i].resize(scale, origin, ratio);
}
return this;
},
/**
* APIMethod: transform
* Reproject the components geometry from source to dest.
*
* Parameters:
* source - {<OpenLayers.Projection>}
* dest - {<OpenLayers.Projection>}
*
* Returns:
* {<OpenLayers.Geometry>}
*/
transform: function(source, dest) {
if (source && dest) {
for (var i=0, len=this.components.length; i<len - 1; i++) {
var component = this.components[i];
component.transform(source, dest);
}
this.bounds = null;
}
return this;
},
/**
* APIMethod: getCentroid
*
* Returns:
* {<OpenLayers.Geometry.Point>} The centroid of the collection
*/
getCentroid: function() {
if ( this.components && (this.components.length > 2)) {
var sumX = 0.0;
var sumY = 0.0;
for (var i = 0; i < this.components.length - 1; i++) {
var b = this.components[i];
var c = this.components[i+1];
sumX += (b.x + c.x) * (b.x * c.y - c.x * b.y);
sumY += (b.y + c.y) * (b.x * c.y - c.x * b.y);
}
var area = -1 * this.getArea();
var x = sumX / (6 * area);
var y = sumY / (6 * area);
}
return new OpenLayers.Geometry.Point(x, y);
},
/**
* APIMethod: getArea
* Note - The area is positive if the ring is oriented CW, otherwise
* it will be negative.
*
* Returns:
* {Float} The signed area for a ring.
*/
getArea: function() {
var area = 0.0;
if ( this.components && (this.components.length > 2)) {
var sum = 0.0;
for (var i=0, len=this.components.length; i<len - 1; i++) {
var b = this.components[i];
var c = this.components[i+1];
sum += (b.x + c.x) * (c.y - b.y);
}
area = - sum / 2.0;
}
return area;
},
/**
* APIMethod: getGeodesicArea
* Calculate the approximate area of the polygon were it projected onto
* the earth. Note that this area will be positive if ring is oriented
* clockwise, otherwise it will be negative.
*
* Parameters:
* projection - {<OpenLayers.Projection>} The spatial reference system
* for the geometry coordinates. If not provided, Geographic/WGS84 is
* assumed.
*
* Reference:
* Robert. G. Chamberlain and William H. Duquette, "Some Algorithms for
* Polygons on a Sphere", JPL Publication 07-03, Jet Propulsion
* Laboratory, Pasadena, CA, June 2007 http://trs-new.jpl.nasa.gov/dspace/handle/2014/40409
*
* Returns:
* {float} The approximate signed geodesic area of the polygon in square
* meters.
*/
getGeodesicArea: function(projection) {
var ring = this; // so we can work with a clone if needed
if(projection) {
var gg = new OpenLayers.Projection("EPSG:4326");
if(!gg.equals(projection)) {
ring = this.clone().transform(projection, gg);
}
}
var area = 0.0;
var len = ring.components && ring.components.length;
if(len > 2) {
var p1, p2;
for(var i=0; i<len-1; i++) {
p1 = ring.components[i];
p2 = ring.components[i+1];
area += OpenLayers.Util.rad(p2.x - p1.x) *
(2 + Math.sin(OpenLayers.Util.rad(p1.y)) +
Math.sin(OpenLayers.Util.rad(p2.y)));
}
area = area * 6378137.0 * 6378137.0 / 2.0;
}
return area;
},
/**
* Method: containsPoint
* Test if a point is inside a linear ring. For the case where a point
* is coincident with a linear ring edge, returns 1. Otherwise,
* returns boolean.
*
* Parameters:
* point - {<OpenLayers.Geometry.Point>}
*
* Returns:
* {Boolean | Number} The point is inside the linear ring. Returns 1 if
* the point is coincident with an edge. Returns boolean otherwise.
*/
containsPoint: function(point) {
var approx = OpenLayers.Number.limitSigDigs;
var digs = 14;
var px = approx(point.x, digs);
var py = approx(point.y, digs);
function getX(y, x1, y1, x2, y2) {
return (((x1 - x2) * y) + ((x2 * y1) - (x1 * y2))) / (y1 - y2);
}
var numSeg = this.components.length - 1;
var start, end, x1, y1, x2, y2, cx, cy;
var crosses = 0;
for(var i=0; i<numSeg; ++i) {
start = this.components[i];
x1 = approx(start.x, digs);
y1 = approx(start.y, digs);
end = this.components[i + 1];
x2 = approx(end.x, digs);
y2 = approx(end.y, digs);
/**
* The following conditions enforce five edge-crossing rules:
* 1. points coincident with edges are considered contained;
* 2. an upward edge includes its starting endpoint, and
* excludes its final endpoint;
* 3. a downward edge excludes its starting endpoint, and
* includes its final endpoint;
* 4. horizontal edges are excluded; and
* 5. the edge-ray intersection point must be strictly right
* of the point P.
*/
if(y1 == y2) {
// horizontal edge
if(py == y1) {
// point on horizontal line
if(x1 <= x2 && (px >= x1 && px <= x2) || // right or vert
x1 >= x2 && (px <= x1 && px >= x2)) { // left or vert
// point on edge
crosses = -1;
break;
}
}
// ignore other horizontal edges
continue;
}
cx = approx(getX(py, x1, y1, x2, y2), digs);
if(cx == px) {
// point on line
if(y1 < y2 && (py >= y1 && py <= y2) || // upward
y1 > y2 && (py <= y1 && py >= y2)) { // downward
// point on edge
crosses = -1;
break;
}
}
if(cx <= px) {
// no crossing to the right
continue;
}
if(x1 != x2 && (cx < Math.min(x1, x2) || cx > Math.max(x1, x2))) {
// no crossing
continue;
}
if(y1 < y2 && (py >= y1 && py < y2) || // upward
y1 > y2 && (py < y1 && py >= y2)) { // downward
++crosses;
}
}
var contained = (crosses == -1) ?
// on edge
1 :
// even (out) or odd (in)
!!(crosses & 1);
return contained;
},
/**
* APIMethod: intersects
* Determine if the input geometry intersects this one.
*
* Parameters:
* geometry - {<OpenLayers.Geometry>} Any type of geometry.
*
* Returns:
* {Boolean} The input geometry intersects this one.
*/
intersects: function(geometry) {
var intersect = false;
if(geometry.CLASS_NAME == "OpenLayers.Geometry.Point") {
intersect = this.containsPoint(geometry);
} else if(geometry.CLASS_NAME == "OpenLayers.Geometry.LineString") {
intersect = geometry.intersects(this);
} else if(geometry.CLASS_NAME == "OpenLayers.Geometry.LinearRing") {
intersect = OpenLayers.Geometry.LineString.prototype.intersects.apply(
this, [geometry]
);
} else {
// check for component intersections
for(var i=0, len=geometry.components.length; i<len; ++ i) {
intersect = geometry.components[i].intersects(this);
if(intersect) {
break;
}
}
}
return intersect;
},
/**
* APIMethod: getVertices
* Return a list of all points in this geometry.
*
* Parameters:
* nodes - {Boolean} For lines, only return vertices that are
* endpoints. If false, for lines, only vertices that are not
* endpoints will be returned. If not provided, all vertices will
* be returned.
*
* Returns:
* {Array} A list of all vertices in the geometry.
*/
getVertices: function(nodes) {
return (nodes === true) ? [] : this.components.slice(0, this.components.length-1);
},
CLASS_NAME: "OpenLayers.Geometry.LinearRing"
});