/** * Copyright 2000, Silicon Graphics, Inc. All Rights Reserved. * Copyright 2012, Google Inc. All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice including the dates of first publication and * either this permission notice or a reference to http://oss.sgi.com/projects/FreeB/ * shall be included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * SILICON GRAPHICS, INC. BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR * IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Original Code. The Original Code is: OpenGL Sample Implementation, * Version 1.2.1, released January 26, 2000, developed by Silicon Graphics, * Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc. * Copyright in any portions created by third parties is as indicated * elsewhere herein. All Rights Reserved. */ /** * @author ericv@cs.stanford.edu (Eric Veach) * @author bckenny@google.com (Brendan Kenny) */ // require libtess // require libtess.CachedVertex // require libtess.GluTesselator // require libtess.GluFace // require libtess.GluHalfEdge // require libtess.GluMesh /*global libtess */ goog.provide('libtess.render'); goog.require('libtess'); goog.require('libtess.FaceCount'); // TODO(bckenny): most of these doc strings are probably more internal comments /** * [SIGN_INCONSISTENT_ description] * @type {number} * @private * @const */ libtess.render.SIGN_INCONSISTENT_ = 2; /** * render.renderMesh(tess, mesh) takes a mesh and breaks it into triangle * fans, strips, and separate triangles. A substantial effort is made * to use as few rendering primitives as possible (i.e. to make the fans * and strips as large as possible). * * The rendering output is provided as callbacks (see the api). * * @param {libtess.GluTesselator} tess [description]. * @param {libtess.GluMesh} mesh [description]. */ libtess.render.renderMesh = function(tess, mesh) { // Make a list of separate triangles so we can render them all at once tess.lonelyTriList = null; var f; for (f = mesh.fHead.next; f !== mesh.fHead; f = f.next) { f.marked = false; } for (f = mesh.fHead.next; f !== mesh.fHead; f = f.next) { // We examine all faces in an arbitrary order. Whenever we find // an unprocessed face F, we output a group of faces including F // whose size is maximum. if (f.inside && ! f.marked) { libtess.render.renderMaximumFaceGroup_(tess, f); libtess.assert(f.marked); } } if (tess.lonelyTriList !== null) { libtess.render.renderLonelyTriangles_(tess, tess.lonelyTriList); tess.lonelyTriList = null; } }; /** * render.renderBoundary(tess, mesh) takes a mesh, and outputs one * contour for each face marked "inside". The rendering output is * provided as callbacks (see the api). * * @param {libtess.GluTesselator} tess [description]. * @param {libtess.GluMesh} mesh [description]. */ libtess.render.renderBoundary = function(tess, mesh) { for (var f = mesh.fHead.next; f !== mesh.fHead; f = f.next) { if (f.inside) { tess.callBeginOrBeginData(libtess.primitiveType.GL_LINE_LOOP); var e = f.anEdge; do { tess.callVertexOrVertexData(e.org.data); e = e.lNext; } while (e !== f.anEdge); tess.callEndOrEndData(); } } }; /** * render.renderCache(tess) takes a single contour and tries to render it * as a triangle fan. This handles convex polygons, as well as some * non-convex polygons if we get lucky. * * Returns true if the polygon was successfully rendered. The rendering * output is provided as callbacks (see the api). * * @param {libtess.GluTesselator} tess [description]. * @return {boolean} [description]. */ libtess.render.renderCache = function(tess) { if (tess.cacheCount < 3) { // degenerate contour -- no output return true; } // TODO(bckenny): better init? var norm = [0, 0, 0]; norm[0] = tess.normal[0]; norm[1] = tess.normal[1]; norm[2] = tess.normal[2]; if (norm[0] === 0 && norm[1] === 0 && norm[2] === 0) { libtess.render.computeNormal_(tess, norm, false); } var sign = libtess.render.computeNormal_(tess, norm, true); if (sign === libtess.render.SIGN_INCONSISTENT_) { // fan triangles did not have a consistent orientation return false; } if (sign === 0) { // all triangles were degenerate return true; } // make sure we do the right thing for each winding rule switch (tess.windingRule) { case libtess.windingRule.GLU_TESS_WINDING_ODD: case libtess.windingRule.GLU_TESS_WINDING_NONZERO: break; case libtess.windingRule.GLU_TESS_WINDING_POSITIVE: if (sign < 0) { return true; } break; case libtess.windingRule.GLU_TESS_WINDING_NEGATIVE: if (sign > 0) { return true; } break; case libtess.windingRule.GLU_TESS_WINDING_ABS_GEQ_TWO: return true; } tess.callBeginOrBeginData(tess.boundaryOnly ? libtess.primitiveType.GL_LINE_LOOP : (tess.cacheCount > 3) ? libtess.primitiveType.GL_TRIANGLE_FAN : libtess.primitiveType.GL_TRIANGLES); // indexes into tess.cache to replace pointers // TODO(bckenny): refactor to be more straightforward var v0 = 0; var vn = v0 + tess.cacheCount; var vc; tess.callVertexOrVertexData(tess.cache[v0].data); if (sign > 0) { for (vc = v0 + 1; vc < vn; ++vc) { tess.callVertexOrVertexData(tess.cache[vc].data); } } else { for (vc = vn - 1; vc > v0; --vc) { tess.callVertexOrVertexData(tess.cache[vc].data); } } tess.callEndOrEndData(); return true; }; /** * Returns true if face has been marked temporarily. * @private * @param {libtess.GluFace} f [description]. * @return {boolean} [description]. */ libtess.render.marked_ = function(f) { // NOTE(bckenny): originally macro return (!f.inside || f.marked); }; /** * [freeTrail description] * @private * @param {libtess.GluFace} t [description]. */ libtess.render.freeTrail_ = function(t) { // NOTE(bckenny): originally macro while (t !== null) { t.marked = false; t = t.trail; } }; /** * eOrig.lFace is the face we want to render. We want to find the size * of a maximal fan around eOrig.org. To do this we just walk around * the origin vertex as far as possible in both directions. * @private * @param {libtess.GluHalfEdge} eOrig [description]. * @return {libtess.FaceCount} [description]. */ libtess.render.maximumFan_ = function(eOrig) { // TODO(bckenny): probably have dest FaceCount passed in (see renderMaximumFaceGroup) var newFace = new libtess.FaceCount(0, null, libtess.render.renderFan_); var trail = null; var e; for (e = eOrig; !libtess.render.marked_(e.lFace); e = e.oNext) { // NOTE(bckenny): AddToTrail(e.lFace, trail) macro e.lFace.trail = trail; trail = e.lFace; e.lFace.marked = true; ++newFace.size; } for (e = eOrig; !libtess.render.marked_(e.rFace()); e = e.oPrev()) { // NOTE(bckenny): AddToTrail(e.rFace(), trail) macro e.rFace().trail = trail; trail = e.rFace(); e.rFace().marked = true; ++newFace.size; } newFace.eStart = e; libtess.render.freeTrail_(trail); return newFace; }; /** * Here we are looking for a maximal strip that contains the vertices * eOrig.org, eOrig.dst(), eOrig.lNext.dst() (in that order or the * reverse, such that all triangles are oriented CCW). * * Again we walk forward and backward as far as possible. However for * strips there is a twist: to get CCW orientations, there must be * an *even* number of triangles in the strip on one side of eOrig. * We walk the strip starting on a side with an even number of triangles; * if both side have an odd number, we are forced to shorten one side. * @private * @param {libtess.GluHalfEdge} eOrig [description]. * @return {libtess.FaceCount} [description]. */ libtess.render.maximumStrip_ = function(eOrig) { // TODO(bckenny): probably have dest FaceCount passed in (see renderMaximumFaceGroup) var newFace = new libtess.FaceCount(0, null, libtess.render.renderStrip_); var headSize = 0; var tailSize = 0; var trail = null; var e; var eTail; var eHead; for (e = eOrig; !libtess.render.marked_(e.lFace); ++tailSize, e = e.oNext) { // NOTE(bckenny): AddToTrail(e.lFace, trail) macro e.lFace.trail = trail; trail = e.lFace; e.lFace.marked = true; ++tailSize; e = e.dPrev(); if (libtess.render.marked_(e.lFace)) { break; } // NOTE(bckenny): AddToTrail(e.lFace, trail) macro e.lFace.trail = trail; trail = e.lFace; e.lFace.marked = true; } eTail = e; for (e = eOrig; !libtess.render.marked_(e.rFace()); ++headSize, e = e.dNext()) { // NOTE(bckenny): AddToTrail(e.rFace(), trail) macro e.rFace().trail = trail; trail = e.rFace(); e.rFace().marked = true; ++headSize; e = e.oPrev(); if (libtess.render.marked_(e.rFace())) { break; } // NOTE(bckenny): AddToTrail(e.rFace(), trail) macro e.rFace().trail = trail; trail = e.rFace(); e.rFace().marked = true; } eHead = e; newFace.size = tailSize + headSize; if ((tailSize & 1) === 0) { // isEven newFace.eStart = eTail.sym; } else if ((headSize & 1) === 0) { // isEven newFace.eStart = eHead; } else { // Both sides have odd length, we must shorten one of them. In fact, // we must start from eHead to guarantee inclusion of eOrig.lFace. --newFace.size; newFace.eStart = eHead.oNext; } libtess.render.freeTrail_(trail); return newFace; }; /** * Render as many CCW triangles as possible in a fan starting from * edge "e". The fan *should* contain exactly "size" triangles * (otherwise we've goofed up somewhere). * @private * @param {libtess.GluTesselator} tess [description]. * @param {libtess.GluHalfEdge} e [description]. * @param {number} size [description]. */ libtess.render.renderFan_ = function(tess, e, size) { tess.callBeginOrBeginData(libtess.primitiveType.GL_TRIANGLE_FAN); tess.callVertexOrVertexData(e.org.data); tess.callVertexOrVertexData(e.dst().data); while (!libtess.render.marked_(e.lFace)) { e.lFace.marked = true; --size; e = e.oNext; tess.callVertexOrVertexData(e.dst().data); } libtess.assert(size === 0); tess.callEndOrEndData(); }; /** * Render as many CCW triangles as possible in a strip starting from * edge e. The strip *should* contain exactly "size" triangles * (otherwise we've goofed up somewhere). * @private * @param {libtess.GluTesselator} tess [description]. * @param {libtess.GluHalfEdge} e [description]. * @param {number} size [description]. */ libtess.render.renderStrip_ = function(tess, e, size) { tess.callBeginOrBeginData(libtess.primitiveType.GL_TRIANGLE_STRIP); tess.callVertexOrVertexData(e.org.data); tess.callVertexOrVertexData(e.dst().data); while (!libtess.render.marked_(e.lFace)) { e.lFace.marked = true; --size; e = e.dPrev(); tess.callVertexOrVertexData(e.org.data); if (libtess.render.marked_(e.lFace)) { break; } e.lFace.marked = true; --size; e = e.oNext; tess.callVertexOrVertexData(e.dst().data); } libtess.assert(size === 0); tess.callEndOrEndData(); }; /** * Just add the triangle to a triangle list, so we can render all * the separate triangles at once. * @private * @param {libtess.GluTesselator} tess [description]. * @param {libtess.GluHalfEdge} e [description]. * @param {number} size [description]. */ libtess.render.renderTriangle_ = function(tess, e, size) { libtess.assert(size === 1); // NOTE(bckenny): AddToTrail(e.lFace, tess.lonelyTriList) macro e.lFace.trail = tess.lonelyTriList; tess.lonelyTriList = e.lFace; e.lFace.marked = true; }; /** * We want to find the largest triangle fan or strip of unmarked faces * which includes the given face fOrig. There are 3 possible fans * passing through fOrig (one centered at each vertex), and 3 possible * strips (one for each CCW permutation of the vertices). Our strategy * is to try all of these, and take the primitive which uses the most * triangles (a greedy approach). * @private * @param {libtess.GluTesselator} tess [description]. * @param {libtess.GluFace} fOrig [description]. */ libtess.render.renderMaximumFaceGroup_ = function(tess, fOrig) { var e = fOrig.anEdge; // TODO(bckenny): see faceCount comments from below. should probably create // two here and pass one in and compare against the other to find max // maybe doesnt matter since so short lived var max = new libtess.FaceCount(1, e, libtess.render.renderTriangle_); var newFace; if (!tess.flagBoundary) { newFace = libtess.render.maximumFan_(e); if (newFace.size > max.size) { max = newFace; } newFace = libtess.render.maximumFan_(e.lNext); if (newFace.size > max.size) { max = newFace; } newFace = libtess.render.maximumFan_(e.lPrev()); if (newFace.size > max.size) { max = newFace; } newFace = libtess.render.maximumStrip_(e); if (newFace.size > max.size) { max = newFace; } newFace = libtess.render.maximumStrip_(e.lNext); if (newFace.size > max.size) { max = newFace; } newFace = libtess.render.maximumStrip_(e.lPrev()); if (newFace.size > max.size) { max = newFace; } } max.render(tess, max.eStart, max.size); }; /** * Now we render all the separate triangles which could not be * grouped into a triangle fan or strip. * @private * @param {libtess.GluTesselator} tess [description]. * @param {libtess.GluFace} head [description]. */ libtess.render.renderLonelyTriangles_ = function(tess, head) { // TODO(bckenny): edgeState needs to be boolean, but != on first call // force edge state output for first vertex var edgeState = -1; var f = head; tess.callBeginOrBeginData(libtess.primitiveType.GL_TRIANGLES); for (; f !== null; f = f.trail) { // Loop once for each edge (there will always be 3 edges) var e = f.anEdge; do { if (tess.flagBoundary) { // Set the "edge state" to true just before we output the // first vertex of each edge on the polygon boundary. var newState = !e.rFace().inside ? 1 : 0; // TODO(bckenny): total hack to get edgeState working. fix me. if (edgeState !== newState) { edgeState = newState; // TODO(bckenny): edgeState should be boolean now tess.callEdgeFlagOrEdgeFlagData(!!edgeState); } } tess.callVertexOrVertexData(e.org.data); e = e.lNext; } while (e !== f.anEdge); } tess.callEndOrEndData(); }; /** * If check==false, we compute the polygon normal and place it in norm[]. * If check==true, we check that each triangle in the fan from v0 has a * consistent orientation with respect to norm[]. If triangles are * consistently oriented CCW, return 1; if CW, return -1; if all triangles * are degenerate return 0; otherwise (no consistent orientation) return * render.SIGN_INCONSISTENT_. * @private * @param {libtess.GluTesselator} tess [description]. * @param {Array.} norm [description]. * @param {boolean} check [description]. * @return {number} int. */ libtess.render.computeNormal_ = function(tess, norm, check) { /* Find the polygon normal. It is important to get a reasonable * normal even when the polygon is self-intersecting (eg. a bowtie). * Otherwise, the computed normal could be very tiny, but perpendicular * to the true plane of the polygon due to numerical noise. Then all * the triangles would appear to be degenerate and we would incorrectly * decompose the polygon as a fan (or simply not render it at all). * * We use a sum-of-triangles normal algorithm rather than the more * efficient sum-of-trapezoids method (used in checkOrientation() * in normal.js). This lets us explicitly reverse the signed area * of some triangles to get a reasonable normal in the self-intersecting * case. */ if (!check) { norm[0] = norm[1] = norm[2] = 0; } // indexes into tess.cache to replace pointers // TODO(bckenny): refactor to be more straightforward var v0 = 0; var vn = v0 + tess.cacheCount; var vc = v0 + 1; var vert0 = tess.cache[v0]; var vertc = tess.cache[vc]; var xc = vertc.coords[0] - vert0.coords[0]; var yc = vertc.coords[1] - vert0.coords[1]; var zc = vertc.coords[2] - vert0.coords[2]; var sign = 0; while (++vc < vn) { vertc = tess.cache[vc]; var xp = xc; var yp = yc; var zp = zc; xc = vertc.coords[0] - vert0.coords[0]; yc = vertc.coords[1] - vert0.coords[1]; zc = vertc.coords[2] - vert0.coords[2]; // Compute (vp - v0) cross (vc - v0) var n = [0, 0, 0]; // TODO(bckenny): better init? n[0] = yp * zc - zp * yc; n[1] = zp * xc - xp * zc; n[2] = xp * yc - yp * xc; var dot = n[0] * norm[0] + n[1] * norm[1] + n[2] * norm[2]; if (!check) { // Reverse the contribution of back-facing triangles to get // a reasonable normal for self-intersecting polygons (see above) if (dot >= 0) { norm[0] += n[0]; norm[1] += n[1]; norm[2] += n[2]; } else { norm[0] -= n[0]; norm[1] -= n[1]; norm[2] -= n[2]; } } else if (dot !== 0) { // Check the new orientation for consistency with previous triangles if (dot > 0) { if (sign < 0) { return libtess.render.SIGN_INCONSISTENT_; } sign = 1; } else { if (sign > 0) { return libtess.render.SIGN_INCONSISTENT_; } sign = -1; } } } return sign; };