Function for getting great circle lengths

This commit is contained in:
Tim Schaub
2017-08-10 17:45:22 -06:00
parent 445c157ee3
commit 92c62e5432
5 changed files with 212 additions and 18 deletions

View File

@@ -8,6 +8,7 @@
goog.provide('ol.Sphere');
goog.require('ol.math');
goog.require('ol.geom.GeometryType');
/**
@@ -75,14 +76,7 @@ ol.Sphere.prototype.geodesicArea = function(coordinates) {
* @api
*/
ol.Sphere.prototype.haversineDistance = function(c1, c2) {
var lat1 = ol.math.toRadians(c1[1]);
var lat2 = ol.math.toRadians(c2[1]);
var deltaLatBy2 = (lat2 - lat1) / 2;
var deltaLonBy2 = ol.math.toRadians(c2[0] - c1[0]) / 2;
var a = Math.sin(deltaLatBy2) * Math.sin(deltaLatBy2) +
Math.sin(deltaLonBy2) * Math.sin(deltaLonBy2) *
Math.cos(lat1) * Math.cos(lat2);
return 2 * this.radius * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
return ol.Sphere.getDistance_(c1, c2, this.radius);
};
@@ -107,3 +101,108 @@ ol.Sphere.prototype.offset = function(c1, distance, bearing) {
Math.cos(dByR) - Math.sin(lat1) * Math.sin(lat));
return [ol.math.toDegrees(lon), ol.math.toDegrees(lat)];
};
/**
* The mean Earth radius (1/3 * (2a + b)) for the WGS84 ellipsoid.
* https://en.wikipedia.org/wiki/Earth_radius#Mean_radius
* @type {number}
*/
ol.Sphere.DEFAULT_RADIUS = 6371008.8;
/**
* Get the spherical length of a geometry. This length is the sum of the
* great circle distances between coordinates. For polygons, the length is
* the sum of all rings. For points, the length is zero. For multi-part
* geometries, the length is the sum of the length of each part.
* @param {ol.geom.Geometry} geometry A geometry.
* @param {olx.SphereLengthOptions} opt_options Options for the length
* calculation. By default, geometries are assumed to be in 'EPSG:3857'.
* You can change this by providing a `projection` option.
* @return {number} The spherical length (in meters).
*/
ol.Sphere.getLength = function(geometry, opt_options) {
var options = opt_options || {};
var radius = options.radius || ol.Sphere.DEFAULT_RADIUS;
var projection = options.projection || 'EPSG:3857';
geometry = geometry.clone().transform(projection, 'EPSG:4326');
var type = geometry.getType();
var length = 0;
var coordinates, coords, i, ii, j, jj;
switch (type) {
case ol.geom.GeometryType.POINT:
case ol.geom.GeometryType.MULTI_POINT: {
break;
}
case ol.geom.GeometryType.LINE_STRING:
case ol.geom.GeometryType.LINEAR_RING: {
coordinates = /** @type {ol.geom.SimpleGeometry} */ (geometry).getCoordinates();
length = ol.Sphere.getLength_(coordinates, radius);
break;
}
case ol.geom.GeometryType.MULTI_LINE_STRING:
case ol.geom.GeometryType.POLYGON: {
coordinates = /** @type {ol.geom.SimpleGeometry} */ (geometry).getCoordinates();
for (i = 0, ii = coordinates.length; i < ii; ++i) {
length += ol.Sphere.getLength_(coordinates[i], radius);
}
break;
}
case ol.geom.GeometryType.MULTI_POLYGON: {
coordinates = /** @type {ol.geom.SimpleGeometry} */ (geometry).getCoordinates();
for (i = 0, ii = coordinates.length; i < ii; ++i) {
coords = coordinates[i];
for (j = 0, jj = coords.length; j < jj; ++j) {
length += ol.Sphere.getLength_(coords[j], radius);
}
}
break;
}
case ol.geom.GeometryType.GEOMETRY_COLLECTION: {
var geometries = /** @type {ol.geom.GeometryCollection} */ (geometry).getGeometries();
for (i = 0, ii = geometries.length; i < ii; ++i) {
length += ol.Sphere.getLength(geometries[i], opt_options);
}
break;
}
default: {
throw new Error('Unsupported geometry type: ' + type);
}
}
return length;
};
/**
* Get the cumulative great circle length of linestring coordinates (geographic).
* @param {Array} coordinates Linestring coordinates.
* @param {number} radius The sphere radius to use.
* @return {number} The length (in meters).
*/
ol.Sphere.getLength_ = function(coordinates, radius) {
var length = 0;
for (var i = 0, ii = coordinates.length; i < ii - 1; ++i) {
length += ol.Sphere.getDistance_(coordinates[i], coordinates[i + 1], radius);
}
return length;
};
/**
* Get the great circle distance between two geographic coordinates.
* @param {Array} c1 Starting coordinate.
* @param {Array} c2 Ending coordinate.
* @param {number} radius The sphere radius to use.
* @return {number} The great circle distance between the points (in meters).
*/
ol.Sphere.getDistance_ = function(c1, c2, radius) {
var lat1 = ol.math.toRadians(c1[1]);
var lat2 = ol.math.toRadians(c2[1]);
var deltaLatBy2 = (lat2 - lat1) / 2;
var deltaLonBy2 = ol.math.toRadians(c2[0] - c1[0]) / 2;
var a = Math.sin(deltaLatBy2) * Math.sin(deltaLatBy2) +
Math.sin(deltaLonBy2) * Math.sin(deltaLonBy2) *
Math.cos(lat1) * Math.cos(lat2);
return 2 * radius * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
};