Allow sampling data from neighboring pixels

This commit is contained in:
Andreas Hocevar
2021-08-14 23:05:19 +02:00
parent 324148c606
commit 7acd5338c9
8 changed files with 250 additions and 21 deletions

View File

@@ -0,0 +1,7 @@
table.controls td {
padding: 2px 5px;
}
table.controls td:nth-child(3) {
text-align: right;
min-width: 3em;
}

View File

@@ -0,0 +1,32 @@
---
layout: example.html
title: Shaded Relief (with WebGL)
shortdesc: Calculate shaded relief from elevation data
docs: >
<p>
For the shaded relief, a single tiled source of elevation data is used as input.
The shaded relief is calculated by the layer's <code>style</code> with a <code>color</code>
expression. The style variables are updated when the user drags one of the sliders. The
<code>band</code> operator is used to sample data from neighboring pixels for calculating slope and
aspect, which is done with the <code>['band', bandIndex, xOffset, yOffset]</code> syntax.
</p>
tags: "webgl, shaded relief"
---
<div id="map" class="map"></div>
<table class="controls">
<tr>
<td><label for="vert">vertical exaggeration:</label></td>
<td><input id="vert" type="range" min="1" max="5" value="1"/></td>
<td><span id="vertOut"></span> x</td>
</tr>
<tr>
<td><label for="sunEl">sun elevation:</label></td>
<td><input id="sunEl" type="range" min="0" max="90" value="45"/></td>
<td><span id="sunElOut"></span> °</td>
</tr>
<tr>
<td><label for="sunAz">sun azimuth:</label></td>
<td><input id="sunAz" type="range" min="0" max="360" value="45"/></td>
<td><span id="sunAzOut"></span> °</td>
</tr>
</table>

View File

@@ -0,0 +1,97 @@
import Map from '../src/ol/Map.js';
import View from '../src/ol/View.js';
import {OSM, XYZ} from '../src/ol/source.js';
import {WebGLTile as TileLayer} from '../src/ol/layer.js';
const variables = {};
// The method used to extract elevations from the DEM.
// In this case the format used is
// red + green * 2 + blue * 3
//
// Other frequently used methods include the Mapbox format
// (red * 256 * 256 + green * 256 + blue) * 0.1 - 10000
// and the Terrarium format
// (red * 256 + green + blue / 256) - 32768
function elevation(xOffset, yOffset) {
return [
'+',
['*', 256, ['band', 1, xOffset, yOffset]],
[
'+',
['*', 2 * 256, ['band', 2, xOffset, yOffset]],
['*', 3 * 256, ['band', 3, xOffset, yOffset]],
],
];
}
// Generates a shaded relief image given elevation data. Uses a 3x3
// neighborhood for determining slope and aspect.
const halfPi = Math.PI / 2;
const dp = ['*', 2, ['resolution']];
const z0x = ['*', ['var', 'vert'], elevation(-1, 0)];
const z1x = ['*', ['var', 'vert'], elevation(1, 0)];
const dzdx = ['/', ['-', z1x, z0x], dp];
const z0y = ['*', ['var', 'vert'], elevation(0, -1)];
const z1y = ['*', ['var', 'vert'], elevation(0, 1)];
const dzdy = ['/', ['-', z1y, z0y], dp];
const slope = ['atan', ['^', ['+', ['^', dzdx, 2], ['^', dzdy, 2]], 0.5]];
const rawAspect = ['atan', dzdy, ['-', 0, dzdx]];
const aspect = [
'case',
['>', rawAspect, halfPi],
['+', halfPi, ['-', Math.PI * 2, rawAspect]],
['-', halfPi, rawAspect],
];
const sunEl = ['*', Math.PI / 180, ['var', 'sunEl']];
const sunAz = ['*', Math.PI / 180, ['var', 'sunAz']];
const cosIncidence = [
'+',
['*', ['sin', sunEl], ['cos', slope]],
['*', ['*', ['cos', sunEl], ['sin', slope]], ['cos', ['-', sunAz, aspect]]],
];
const scaled = ['*', 255, cosIncidence];
const shadedRelief = new TileLayer({
opacity: 0.3,
source: new XYZ({
url: 'https://{a-d}.tiles.mapbox.com/v3/aj.sf-dem/{z}/{x}/{y}.png',
crossOrigin: 'anonymous',
}),
style: {
variables: variables,
color: ['color', scaled, scaled, scaled],
},
});
const controlIds = ['vert', 'sunEl', 'sunAz'];
controlIds.forEach(function (id) {
const control = document.getElementById(id);
const output = document.getElementById(id + 'Out');
function updateValues() {
output.innerText = control.value;
variables[id] = Number(control.value);
}
updateValues();
control.addEventListener('input', () => {
updateValues();
shadedRelief.updateStyleVariables(variables);
});
});
const map = new Map({
target: 'map',
layers: [
new TileLayer({
source: new OSM(),
}),
shadedRelief,
],
view: new View({
extent: [-13675026, 4439648, -13580856, 4580292],
center: [-13615645, 4497969],
minZoom: 10,
maxZoom: 16,
zoom: 13,
}),
});

View File

@@ -13,3 +13,4 @@ export {default as Vector} from './layer/Vector.js';
export {default as VectorImage} from './layer/VectorImage.js';
export {default as VectorTile} from './layer/VectorTile.js';
export {default as WebGLPoints} from './layer/WebGLPoints.js';
export {default as WebGLTile} from './layer/WebGLTile.js';

View File

@@ -215,6 +215,10 @@ function parseStyle(style, bandCount) {
varying vec2 v_textureCoord;
uniform float ${Uniforms.TRANSITION_ALPHA};
uniform float ${Uniforms.TEXTURE_PIXEL_WIDTH};
uniform float ${Uniforms.TEXTURE_PIXEL_HEIGHT};
uniform float ${Uniforms.RESOLUTION};
uniform float ${Uniforms.ZOOM};
${uniformDeclarations.join('\n')}

View File

@@ -35,6 +35,10 @@ export const Uniforms = {
TILE_TRANSFORM: 'u_tileTransform',
TRANSITION_ALPHA: 'u_transitionAlpha',
DEPTH: 'u_depth',
TEXTURE_PIXEL_WIDTH: 'u_texturePixelWidth',
TEXTURE_PIXEL_HEIGHT: 'u_texturePixelHeight',
RESOLUTION: 'u_resolution',
ZOOM: 'u_zoom',
};
export const Attributes = {
@@ -75,6 +79,23 @@ function addTileTextureToLookup(tileTexturesByZ, tileTexture, z) {
tileTexturesByZ[z].push(tileTexture);
}
/**
*
* @param {import("../../PluggableMap.js").FrameState} frameState Frame state.
* @return {import("../../extent.js").Extent} Extent.
*/
function getRenderExtent(frameState) {
const layerState = frameState.layerStatesArray[frameState.layerIndex];
let extent = frameState.extent;
if (layerState.extent) {
extent = getIntersection(
extent,
fromUserExtent(layerState.extent, frameState.viewState.projection)
);
}
return extent;
}
/**
* @typedef {Object} Options
* @property {string} vertexShader Vertex shader source.
@@ -183,6 +204,9 @@ class WebGLTileLayerRenderer extends WebGLLayerRenderer {
* @return {boolean} Layer is ready to be rendered.
*/
prepareFrame(frameState) {
if (isEmpty(getRenderExtent(frameState))) {
return false;
}
const source = this.getLayer().getSource();
if (!source) {
return false;
@@ -198,20 +222,9 @@ class WebGLTileLayerRenderer extends WebGLLayerRenderer {
renderFrame(frameState) {
this.preRender(frameState);
const layerState = frameState.layerStatesArray[frameState.layerIndex];
const viewState = frameState.viewState;
let extent = frameState.extent;
if (layerState.extent) {
extent = getIntersection(
extent,
fromUserExtent(layerState.extent, viewState.projection)
);
}
if (isEmpty(extent)) {
return;
}
const layerState = frameState.layerStatesArray[frameState.layerIndex];
const extent = getRenderExtent(frameState);
const tileLayer = this.getLayer();
const tileSource = tileLayer.getSource();
const tileGrid = tileSource.getTileGridForProjection(viewState.projection);
@@ -421,6 +434,19 @@ class WebGLTileLayerRenderer extends WebGLLayerRenderer {
this.helper.setUniformFloatValue(Uniforms.TRANSITION_ALPHA, alpha);
this.helper.setUniformFloatValue(Uniforms.DEPTH, depth);
this.helper.setUniformFloatValue(
Uniforms.TEXTURE_PIXEL_WIDTH,
tileSize[0]
);
this.helper.setUniformFloatValue(
Uniforms.TEXTURE_PIXEL_HEIGHT,
tileSize[1]
);
this.helper.setUniformFloatValue(
Uniforms.RESOLUTION,
viewState.resolution
);
this.helper.setUniformFloatValue(Uniforms.ZOOM, viewState.zoom);
this.helper.drawElements(0, this.indices_.getSize());
}

View File

@@ -5,6 +5,8 @@
export {default as BingMaps} from './source/BingMaps.js';
export {default as CartoDB} from './source/CartoDB.js';
export {default as Cluster} from './source/Cluster.js';
export {default as DataTile} from './source/DataTile.js';
export {default as GeoTIFF} from './source/GeoTIFF.js';
export {default as IIIF} from './source/IIIF.js';
export {default as Image} from './source/Image.js';
export {default as ImageArcGISRest} from './source/ImageArcGISRest.js';

View File

@@ -3,6 +3,7 @@
* @module ol/style/expressions
*/
import {Uniforms} from '../renderer/webgl/TileLayer.js';
import {asArray, isStringColor} from '../color.js';
/**
@@ -12,12 +13,13 @@ import {asArray, isStringColor} from '../color.js';
* The following operators can be used:
*
* * Reading operators:
* * `['band', bandIndex]` fetches a pixel value from band `bandIndex` of the source's data. The first
* `bandIndex` of the source data is `1`. Fetched values are in the 0..1 range.
* {@link import("../source/TileImage.js").default} sources have 4 bands: red, green, blue and alpha.
* {@link import("../source/DataTile.js").default} sources can have any number of bands, depending on
* the underlying data source and
* {@link import("../source/GeoTIFF.js").Options configuration}.
* * `['band', bandIndex, xOffset, yOffset]` For tile layers only. Fetches pixel values from band
* `bandIndex` of the source's data. The first `bandIndex` of the source data is `1`. Fetched values
* are in the 0..1 range. {@link import("../source/TileImage.js").default} sources have 4 bands: red,
* green, blue and alpha. {@link import("../source/DataTile.js").default} sources can have any number
* of bands, depending on the underlying data source and
* {@link import("../source/GeoTIFF.js").Options configuration}. `xOffset` and `yOffset` are optional
* and allow specifying pixel offsets for x and y. This is used for sampling data from neighboring pixels.
* * `['get', 'attributeName']` fetches a feature attribute (it will be prefixed by `a_` in the shader)
* Note: those will be taken from the attributes provided to the renderer
* * `['resolution']` returns the current resolution
@@ -34,6 +36,9 @@ import {asArray, isStringColor} from '../color.js';
* * `['%', value1, value2]` returns the result of `value1 % value2` (modulo)
* * `['^', value1, value2]` returns the value of `value1` raised to the `value2` power
* * `['abs', value1]` returns the absolute value of `value1`
* * `['sin', value1]` returns the sine of `value1`
* * `['cos', value1]` returns the cosine of `value1`
* * `['atan', value1, value2]` returns `atan2(value1, value2)`. If `value2` is not provided, returns `atan(value1)`
*
* * Transform operators:
* * `['case', condition1, output1, ...conditionN, outputN, fallback]` selects the first output whose corresponding
@@ -416,7 +421,8 @@ Operators['band'] = {
return ValueTypes.NUMBER;
},
toGlsl: function (context, args) {
assertArgsCount(args, 1);
assertArgsMinCount(args, 1);
assertArgsMaxCount(args, 3);
const band = args[0];
if (typeof band !== 'number') {
throw new Error('Band index must be a number');
@@ -428,7 +434,22 @@ Operators['band'] = {
// LUMINANCE_ALPHA - band 1 assigned to rgb and band 2 assigned to alpha
bandIndex = 3;
}
return `color${colorIndex}[${bandIndex}]`;
if (args.length === 1) {
return `color${colorIndex}[${bandIndex}]`;
} else {
const xOffset = args[1];
const yOffset = args[2] || 0;
assertNumber(xOffset);
assertNumber(yOffset);
const uniformName = Uniforms.TILE_TEXTURE_PREFIX + colorIndex;
return `texture2D(${uniformName}, v_textureCoord + vec2(${expressionToGlsl(
context,
xOffset
)} / ${Uniforms.TEXTURE_PIXEL_WIDTH}, ${expressionToGlsl(
context,
yOffset
)} / ${Uniforms.TEXTURE_PIXEL_HEIGHT}))[${bandIndex}]`;
}
},
};
@@ -570,6 +591,45 @@ Operators['abs'] = {
},
};
Operators['sin'] = {
getReturnType: function (args) {
return ValueTypes.NUMBER;
},
toGlsl: function (context, args) {
assertArgsCount(args, 1);
assertNumbers(args);
return `sin(${expressionToGlsl(context, args[0])})`;
},
};
Operators['cos'] = {
getReturnType: function (args) {
return ValueTypes.NUMBER;
},
toGlsl: function (context, args) {
assertArgsCount(args, 1);
assertNumbers(args);
return `cos(${expressionToGlsl(context, args[0])})`;
},
};
Operators['atan'] = {
getReturnType: function (args) {
return ValueTypes.NUMBER;
},
toGlsl: function (context, args) {
assertArgsMinCount(args, 1);
assertArgsMaxCount(args, 2);
assertNumbers(args);
return args.length === 2
? `atan(${expressionToGlsl(context, args[0])}, ${expressionToGlsl(
context,
args[1]
)})`
: `atan(${expressionToGlsl(context, args[0])})`;
},
};
Operators['>'] = {
getReturnType: function (args) {
return ValueTypes.BOOLEAN;