diff --git a/src/ol/structs/rtree.js b/src/ol/structs/rtree.js index b56164f527..5c18b488b8 100644 --- a/src/ol/structs/rtree.js +++ b/src/ol/structs/rtree.js @@ -1,208 +1,582 @@ +/****************************************************************************** + rtree.js - General-Purpose Non-Recursive Javascript R-Tree Library + Version 0.6.2, December 5st 2009 + + Copyright (c) 2009 Jon-Carlos Rivera + + Permission is hereby granted, free of charge, to any person obtaining + a copy of this software and associated documentation files (the + "Software"), to deal in the Software without restriction, including + without limitation the rights to use, copy, modify, merge, publish, + distribute, sublicense, and/or sell copies of the Software, and to + permit persons to whom the Software is furnished to do so, subject to + the following conditions: + + The above copyright notice and this permission notice shall be + included in all copies or substantial portions of the Software. + + THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE + LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION + OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION + WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + + Jon-Carlos Rivera - imbcmdth@hotmail.com +******************************************************************************/ + + goog.provide('ol.structs.RTree'); +goog.provide('ol.structs.RTreeRectangle'); goog.require('goog.object'); -goog.require('ol.extent'); /** - * @private + * @param {number=} opt_width Width before a node is split. Default is 6. * @constructor - * @param {ol.Extent} bounds Extent. - * @param {ol.structs.RTreeNode_} parent Parent node. - * @param {number} level Level in the tree hierarchy. */ -ol.structs.RTreeNode_ = function(bounds, parent, level) { +ol.structs.RTree = function(opt_width) { + // Variables to control tree-dimensions + var minWidth = 3; // Minimum width of any node before a merge + var maxWidth = 6; // Maximum width of any node before a split + if (!isNaN(opt_width)) { + minWidth = Math.floor(opt_width / 2); + maxWidth = opt_width; + } + // Start with an empty root-tree + var tree = {x: 0, y: 0, w: 0, h: 0, nodes: []}; - /** - * @type {ol.Extent} + // This is my special addition to the world of r-trees + // every other (simple) method I found produced crap trees + // this skews insertions to prefering squarer and emptier nodes + var squarifiedRatio = function(l, w, fill) { + // Area of new enlarged rectangle + var peri = (l + w) / 2; // Average size of a side of the new rectangle + var area = l * w; // Area of new rectangle + // return the ratio of the perimeter to the area - the closer to 1 we are, + // the more "square" a rectangle is. conversly, when approaching zero the + // more elongated a rectangle is + var geo = area / (peri * peri); + return area * fill / geo; + }; + + /* find the best specific node(s) for object to be deleted from + * [ leaf node parent ] = removeSubtree(rectangle, object, root) + * @private */ - this.bounds = bounds; + var removeSubtree = function(rect, obj, root) { + var hitStack = []; // Contains the elements that overlap + var countStack = []; // Contains the elements that overlap + var returnArray = []; + var currentDepth = 1; - /** - * @type {Object} + if (!rect || !ol.structs.RTreeRectangle.overlapRectangle(rect, root)) { + return returnArray; + } + + var workingObject = { + x: rect.x, y: rect.y, w: rect.w, h: rect.h, target: obj + }; + + countStack.push(root.nodes.length); + hitStack.push(root); + + do { + var tree = hitStack.pop(); + var i = countStack.pop() - 1; + + if ('target' in workingObject) { // We are searching for a target + while (i >= 0) { + var lTree = tree.nodes[i]; + if (ol.structs.RTreeRectangle.overlapRectangle( + workingObject, lTree)) { + if ((workingObject.target && 'leaf' in lTree && + lTree.leaf === workingObject.target) || + (!workingObject.target && ('leaf' in lTree || + ol.structs.RTreeRectangle.containsRectangle( + lTree, workingObject)))) { // A Match !! + // Yup we found a match... + // we can cancel search and start walking up the list + if ('nodes' in lTree) {// If we are deleting a node not a leaf... + returnArray = searchSubtree(lTree, true, [], lTree); + tree.nodes.splice(i, 1); + } else { + returnArray = tree.nodes.splice(i, 1); + } + // Resize MBR down... + ol.structs.RTreeRectangle.makeMBR(tree.nodes, tree); + delete workingObject.target; + if (tree.nodes.length < minWidth) { // Underflow + workingObject.nodes = searchSubtree(tree, true, [], tree); + } + break; + } else if ('nodes' in lTree) { // Not a Leaf + currentDepth += 1; + countStack.push(i); + hitStack.push(tree); + tree = lTree; + i = lTree.nodes.length; + } + } + i -= 1; + } + } else if ('nodes' in workingObject) { // We are unsplitting + tree.nodes.splice(i + 1, 1); // Remove unsplit node + // workingObject.nodes contains a list of elements removed from the + // tree so far + if (tree.nodes.length > 0) + ol.structs.RTreeRectangle.makeMBR(tree.nodes, tree); + for (var t = 0, tt = workingObject.nodes.length; t < tt; ++t) + insertSubtree(workingObject.nodes[t], tree); + workingObject.nodes.length = 0; + if (hitStack.length == 0 && tree.nodes.length <= 1) { + // Underflow..on root! + workingObject.nodes = + searchSubtree(tree, true, workingObject.nodes, tree); + tree.nodes.length = 0; + hitStack.push(tree); + countStack.push(1); + } else if (hitStack.length > 0 && tree.nodes.length < minWidth) { + // Underflow..AGAIN! + workingObject.nodes = + searchSubtree(tree, true, workingObject.nodes, tree); + tree.nodes.length = 0; + } else { + delete workingObject.nodes; // Just start resizing + } + } else { // we are just resizing + ol.structs.RTreeRectangle.makeMBR(tree.nodes, tree); + } + currentDepth -= 1; + } while (hitStack.length > 0); + + return returnArray; + }; + + /* choose the best damn node for rectangle to be inserted into + * [ leaf node parent ] = chooseLeafSubtree(rectangle, root to start search + * at) + * @private */ - this.object; + var chooseLeafSubtree = function(rect, root) { + var bestChoiceIndex = -1; + var bestChoiceStack = []; + var bestChoiceArea; - /** - * @type {string} + bestChoiceStack.push(root); + var nodes = root.nodes; + + do { + if (bestChoiceIndex != -1) { + bestChoiceStack.push(nodes[bestChoiceIndex]); + nodes = nodes[bestChoiceIndex].nodes; + bestChoiceIndex = -1; + } + + for (var i = nodes.length - 1; i >= 0; --i) { + var lTree = nodes[i]; + if ('leaf' in lTree) { + // Bail out of everything and start inserting + bestChoiceIndex = -1; + break; + } + // Area of new enlarged rectangle + var oldLRatio = squarifiedRatio(lTree.w, lTree.h, + lTree.nodes.length + 1); + + // Enlarge rectangle to fit new rectangle + var nw = Math.max(lTree.x + lTree.w, rect.x + rect.w) - + Math.min(lTree.x, rect.x); + var nh = Math.max(lTree.y + lTree.h, rect.y + rect.h) - + Math.min(lTree.y, rect.y); + + // Area of new enlarged rectangle + var lRatio = squarifiedRatio(nw, nh, lTree.nodes.length + 2); + + if (bestChoiceIndex < 0 || + Math.abs(lRatio - oldLRatio) < bestChoiceArea) { + bestChoiceArea = Math.abs(lRatio - oldLRatio); + bestChoiceIndex = i; + } + } + } while (bestChoiceIndex != -1); + + return bestChoiceStack; + }; + + /* split a set of nodes into two roughly equally-filled nodes + * [ an array of two new arrays of nodes ] = linearSplit(array of nodes) + * @private */ - this.objectId; + var linearSplit = function(nodes) { + var n = pickLinear(nodes); + while (nodes.length > 0) { + pickNext(nodes, n[0], n[1]); + } + return n; + }; - /** - * @type {ol.structs.RTreeNode_} + /* insert the best source rectangle into the best fitting parent node: a or b + * [] = pick_next(array of source nodes, target node array a, target node + * array b) + * @private */ - this.parent = parent; + var pickNext = function(nodes, a, b) { + // Area of new enlarged rectangle + var areaA = squarifiedRatio(a.w, a.h, a.nodes.length + 1); + var areaB = squarifiedRatio(b.w, b.h, b.nodes.length + 1); + var highAreaDelta; + var highAreaNode; + var lowestGrowthGroup; - /** - * @type {number} + for (var i = nodes.length - 1; i >= 0; --i) { + var l = nodes[i]; + var newAreaA = {}; + newAreaA.x = Math.min(a.x, l.x); + newAreaA.y = Math.min(a.y, l.y); + newAreaA.w = Math.max(a.x + a.w, l.x + l.w) - newAreaA.x; + newAreaA.h = Math.max(a.y + a.h, l.y + l.h) - newAreaA.y; + var changeNewAreaA = Math.abs(squarifiedRatio(newAreaA.w, newAreaA.h, + a.nodes.length + 2) - areaA); + + var newAreaB = {}; + newAreaB.x = Math.min(b.x, l.x); + newAreaB.y = Math.min(b.y, l.y); + newAreaB.w = Math.max(b.x + b.w, l.x + l.w) - newAreaB.x; + newAreaB.h = Math.max(b.y + b.h, l.y + l.h) - newAreaB.y; + var changeNewAreaB = Math.abs(squarifiedRatio( + newAreaB.w, newAreaB.h, b.nodes.length + 2) - areaB); + + if (!highAreaNode || !highAreaDelta || + Math.abs(changeNewAreaB - changeNewAreaA) < highAreaDelta) { + highAreaNode = i; + highAreaDelta = Math.abs(changeNewAreaB - changeNewAreaA); + lowestGrowthGroup = changeNewAreaB < changeNewAreaA ? b : a; + } + } + var tempNode = nodes.splice(highAreaNode, 1)[0]; + if (a.nodes.length + nodes.length + 1 <= minWidth) { + a.nodes.push(tempNode); + ol.structs.RTreeRectangle.expandRectangle(a, tempNode); + } else if (b.nodes.length + nodes.length + 1 <= minWidth) { + b.nodes.push(tempNode); + ol.structs.RTreeRectangle.expandRectangle(b, tempNode); + } + else { + lowestGrowthGroup.nodes.push(tempNode); + ol.structs.RTreeRectangle.expandRectangle(lowestGrowthGroup, tempNode); + } + }; + + /* pick the "best" two starter nodes to use as seeds using the "linear" + * criteria [ an array of two new arrays of nodes ] = pickLinear(array of + * source nodes) + * @private */ - this.level = level; + var pickLinear = function(nodes) { + var lowestHighX = nodes.length - 1; + var highestLowX = 0; + var lowestHighY = nodes.length - 1; + var highestLowY = 0; + var t1, t2; - /** - * @type {Object.} - */ - this.types = {}; - - /** - * @type {Array.} - */ - this.children = []; - -}; - - -/** - * Find all objects intersected by a rectangle. - * @param {ol.Extent} bounds Bounding box. - * @param {Object.} results Target object for results. - * @param {string=} opt_type Type for another indexing dimension. - */ -ol.structs.RTreeNode_.prototype.find = function(bounds, results, opt_type) { - if ((!goog.isDef(opt_type) || this.types[opt_type] === true) && - ol.extent.intersects(this.bounds, bounds)) { - var numChildren = this.children.length; - if (numChildren === 0) { - if (goog.isDef(this.object)) { - results[this.objectId] = this.object; + for (var i = nodes.length - 2; i >= 0; --i) { + var l = nodes[i]; + if (l.x > nodes[highestLowX].x) { + highestLowX = i; + } else if (l.x + l.w < nodes[lowestHighX].x + nodes[lowestHighX].w) { + lowestHighX = i; + } + if (l.y > nodes[highestLowY].y) { + highestLowY = i; + } else if (l.y + l.h < nodes[lowestHighY].y + nodes[lowestHighY].h) { + lowestHighY = i; + } + } + var dx = Math.abs((nodes[lowestHighX].x + nodes[lowestHighX].w) - + nodes[highestLowX].x); + var dy = Math.abs((nodes[lowestHighY].y + nodes[lowestHighY].h) - + nodes[highestLowY].y); + if (dx > dy) { + if (lowestHighX > highestLowX) { + t1 = nodes.splice(lowestHighX, 1)[0]; + t2 = nodes.splice(highestLowX, 1)[0]; + } else { + t2 = nodes.splice(highestLowX, 1)[0]; + t1 = nodes.splice(lowestHighX, 1)[0]; } } else { - for (var i = 0; i < numChildren; ++i) { - this.children[i].find(bounds, results, opt_type); + if (lowestHighY > highestLowY) { + t1 = nodes.splice(lowestHighY, 1)[0]; + t2 = nodes.splice(highestLowY, 1)[0]; + } else { + t2 = nodes.splice(highestLowY, 1)[0]; + t1 = nodes.splice(lowestHighY, 1)[0]; } } - } -}; + return [ + {x: t1.x, y: t1.y, w: t1.w, h: t1.h, nodes: [t1]}, + {x: t2.x, y: t2.y, w: t2.w, h: t2.h, nodes: [t2]} + ]; + }; - -/** - * Find the appropriate node for insertion. - * @param {ol.Extent} bounds Bounding box. - * @return {ol.structs.RTreeNode_|undefined} Matching node. - */ -ol.structs.RTreeNode_.prototype.get = function(bounds) { - if (ol.extent.intersects(this.bounds, bounds)) { - var numChildren = this.children.length; - if (numChildren === 0) { - return goog.isNull(this.parent) ? this : this.parent; - } - var node; - for (var i = 0; i < numChildren; ++i) { - node = this.children[i].get(bounds); - if (goog.isDef(node)) { - return node; - } - } - return this; - } -}; - - -/** - * Update boxes up to the root to ensure correct bounding - * @param {ol.Extent} bounds Bounding box. - */ -ol.structs.RTreeNode_.prototype.update = function(bounds) { - ol.extent.extend(this.bounds, bounds); - if (!goog.isNull(this.parent)) { - this.parent.update(bounds); - } -}; - - -/** - * Divide @this node's children in half and create two new boxes containing - * the split items. The top left will be the topmost leftmost child and the - * bottom right will be the rightmost bottommost child. - */ -ol.structs.RTreeNode_.prototype.divide = function() { - var numChildren = this.children.length; - if (numChildren === 0) { - return; - } - - var half = Math.ceil(numChildren / 2), - child, node; - - for (var i = 0; i < numChildren; ++i) { - child = this.children[i]; - if (i % half === 0) { - node = new ol.structs.RTreeNode_( - child.bounds.slice(), this, this.level + 1); - goog.object.extend(this.types, node.types); - this.children.push(node); - } - child.parent = /** @type {ol.structs.RTreeNode_} */ (node); - goog.object.extend(node.types, child.types); - node.children.push(child); - ol.extent.extend(node.bounds, child.bounds); - } -}; - - - -/** - * @constructor - */ -ol.structs.RTree = function() { + var attachData = function(node, moreTree) { + node.nodes = moreTree.nodes; + node.x = moreTree.x; node.y = moreTree.y; + node.w = moreTree.w; node.h = moreTree.h; + return node; + }; /** - * @private - * @type {ol.structs.RTreeNode_} + * Non-recursive internal search function + * + * @param {Object} rect Rectangle. + * @param {boolean} returnNode Do we return nodes? + * @param {Array|Object} result Result. + * @param {Object} root Root. + * @param {string=} opt_type Optional type to search for. + * @return {Array|Object} Result. */ - this.root_ = new ol.structs.RTreeNode_( - [-Infinity, Infinity, -Infinity, Infinity], null, 0); + var searchSubtree = function(rect, returnNode, result, root, opt_type) { + var hitStack = []; // Contains the elements that overlap -}; + if (!ol.structs.RTreeRectangle.overlapRectangle(rect, root)) { + return result; + } + hitStack.push(root.nodes); -/** - * @param {ol.Extent} bounds Bounding box. - * @param {string=} opt_type Type for another indexing dimension. - * @return {Object.} Results for the passed bounding box. - */ -ol.structs.RTree.prototype.find = function(bounds, opt_type) { - var results = /** @type {Object.} */ ({}); - this.root_.find(bounds, results, opt_type); - return results; -}; + do { + var nodes = hitStack.pop(); + for (var i = nodes.length - 1; i >= 0; --i) { + var lTree = nodes[i]; + if (ol.structs.RTreeRectangle.overlapRectangle(rect, lTree)) { + if ('nodes' in lTree) { // Not a Leaf + hitStack.push(lTree.nodes); + } else if ('leaf' in lTree) { // A Leaf !! + if (!returnNode) { + // TODO keep track of type on all nodes so we don't have to + // walk all the way in to the leaf to know that we don't need it + if (!goog.isDef(opt_type) || lTree.type == opt_type) { + var obj = lTree.leaf; + result[goog.getUid(obj)] = obj; + } + } else { + result.push(lTree); + } + } + } + } + } while (hitStack.length > 0); -/** - * @param {ol.Extent} bounds Bounding box. - * @param {Object} object Object to store with the passed bounds. - * @param {string=} opt_type Type for another indexing dimension. - */ -ol.structs.RTree.prototype.put = function(bounds, object, opt_type) { - var found = this.root_.get(bounds); - if (found) { - var node = new ol.structs.RTreeNode_(bounds, found, found.level + 1); - node.object = object; - node.objectId = goog.getUid(object).toString(); + return result; + }; - found.children.push(node); - found.update(bounds); + /* non-recursive internal insert function + * [] = insertSubtree(rectangle, object to insert, root to begin insertion at) + * @private + */ + var insertSubtree = function(node, root) { + var bc; // Best Current node + // Initial insertion is special because we resize the Tree and we don't + // care about any overflow (seriously, how can the first object overflow?) + if (root.nodes.length == 0) { + root.x = node.x; + root.y = node.y; + root.w = node.w; + root.h = node.h; + root.nodes.push(node); + return; + } + // Find the best fitting leaf node + // chooseLeaf returns an array of all tree levels (including root) + // that were traversed while trying to find the leaf + var treeStack = chooseLeafSubtree(node, root); + var workingObject = node;//{x:rect.x,y:rect.y,w:rect.w,h:rect.h, leaf: obj}; + + // Walk back up the tree resizing and inserting as needed + do { + //handle the case of an empty node (from a split) + if (bc && 'nodes' in bc && bc.nodes.length == 0) { + var pbc = bc; // Past bc + bc = treeStack.pop(); + for (var t = 0, tt = bc.nodes.length; t < tt; ++t) { + if (bc.nodes[t] === pbc || bc.nodes[t].nodes.length == 0) { + bc.nodes.splice(t, 1); + break; + } + } + } else { + bc = treeStack.pop(); + } + + // If there is data attached to this workingObject + var isArray = goog.isArray(workingObject); + if ('leaf' in workingObject || 'nodes' in workingObject || isArray) { + // Do Insert + if (isArray) { + for (var ai = 0, aii = workingObject.length; ai < aii; ++ai) { + ol.structs.RTreeRectangle.expandRectangle(bc, workingObject[ai]); + } + bc.nodes = bc.nodes.concat(workingObject); + } else { + ol.structs.RTreeRectangle.expandRectangle(bc, workingObject); + bc.nodes.push(workingObject); // Do Insert + } + + if (bc.nodes.length <= maxWidth) { // Start Resizeing Up the Tree + workingObject = {x: bc.x, y: bc.y, w: bc.w, h: bc.h}; + } else { // Otherwise Split this Node + // linearSplit() returns an array containing two new nodes + // formed from the split of the previous node's overflow + var a = linearSplit(bc.nodes); + workingObject = a;//[1]; + + if (treeStack.length < 1) { // If are splitting the root.. + bc.nodes.push(a[0]); + treeStack.push(bc); // Reconsider the root element + workingObject = a[1]; + } + } + } else { // Otherwise Do Resize + //Just keep applying the new bounding rectangle to the parents.. + ol.structs.RTreeRectangle.expandRectangle(bc, workingObject); + workingObject = {x: bc.x, y: bc.y, w: bc.w, h: bc.h}; + } + } while (treeStack.length > 0); + }; + + /** + * Non-recursive search function + * + * @param {Object} rect Rectangle. + * @param {string=} opt_type Optional type of the objects we want to find. + * @return {Object} Result. Keys are UIDs of the values. + * @this {ol.structs.RTree} + */ + this.find = function(rect, opt_type) { + rect = {x: rect[0], y: rect[2], w: rect[1] - rect[0], h: rect[3] - rect[2]}; + return searchSubtree.apply(this, [rect, false, {}, tree, opt_type]); + }; + + /* non-recursive function that deletes a specific + * [ number ] = RTree.remove(rectangle, obj) + */ + this.remove = function(rect, opt_obj) { + switch (arguments.length) { + case 1: + arguments[1] = false; // opt_obj == false for conditionals + case 2: + arguments[2] = tree; // Add root node to end of argument list + default: + arguments.length = 3; + } + if (arguments[1] === false) { // Do area-wide delete + var numberDeleted = 0; + var result = []; + do { + numberDeleted = result.length; + result = result.concat(removeSubtree.apply(this, arguments)); + } while (numberDeleted != result.length); + return result; + } else { // Delete a specific item + return removeSubtree.apply(this, arguments); + } + }; + + /* non-recursive insert function + * [] = RTree.put(rectangle, object to insert) + */ + this.put = function(rect, obj, opt_type) { + var node = { + x: rect[0], y: rect[2], w: rect[1] - rect[0], h: rect[3] - rect[2], + leaf: obj + }; if (goog.isDef(opt_type)) { - node.types[opt_type] = true; - found.types[opt_type] = true; + node.type = opt_type; } + insertSubtree(node, tree); + }; - if (found.children.length >= ol.structs.RTree.MAX_OBJECTS && - found.level < ol.structs.RTree.MAX_SUB_DIVISIONS) { - found.divide(); - } - } + //End of RTree }; /** - * @type {number} + * Returns true if rectangle 1 overlaps rectangle 2. + * + * @param {Object} a Rectangle A. + * @param {Object} b Rectangle B. + * @return {boolean} Does a overlap b? */ -ol.structs.RTree.MAX_SUB_DIVISIONS = 6; +ol.structs.RTreeRectangle.overlapRectangle = function(a, b) { + return a.x <= (b.x + b.w) && (a.x + a.w) >= b.x && a.y <= (b.y + b.h) && + (a.y + a.h) >= b.y; +}; /** - * @type {number} + * Returns true if rectangle a is contained in rectangle b. + * + * @param {Object} a Rectangle A. + * @param {Object} b Rectangle B. + * @return {boolean} Is a contained in b? */ -ol.structs.RTree.MAX_OBJECTS = 6; +ol.structs.RTreeRectangle.containsRectangle = function(a, b) { + return (a.x + a.w) <= (b.x + b.w) && a.x >= b.x && (a.y + a.h) <= + (b.y + b.h) && a.y >= b.y; +}; + + +/** + * Expands rectangle A to include rectangle B, rectangle B is untouched. + * + * @param {Object} a Rectangle A. + * @param {Object} b Rectangle B. + * @return {Object} Rectangle A. + */ +ol.structs.RTreeRectangle.expandRectangle = function(a, b) { + var nx = Math.min(a.x, b.x); + var ny = Math.min(a.y, b.y); + a.w = Math.max(a.x + a.w, b.x + b.w) - nx; + a.h = Math.max(a.y + a.h, b.y + b.h) - ny; + a.x = nx; + a.y = ny; + return a; +}; + + +/** + * Generates a minimally bounding rectangle for all rectangles in + * array "nodes". If rect is set, it is modified into the MBR. Otherwise, + * a new rectangle is generated and returned. + * + * @param {Array} nodes Nodes. + * @param {Object} rect Rectangle. + * @return {Object} Rectangle. + */ +ol.structs.RTreeRectangle.makeMBR = function(nodes, rect) { + if (nodes.length < 1) { + return {x: 0, y: 0, w: 0, h: 0}; + } + if (!rect) { + rect = {x: nodes[0].x, y: nodes[0].y, w: nodes[0].w, h: nodes[0].h}; + } + else { + rect.x = nodes[0].x; + rect.y = nodes[0].y; + rect.w = nodes[0].w; + rect.h = nodes[0].h; + } + + for (var i = nodes.length - 1; i > 0; --i) { + ol.structs.RTreeRectangle.expandRectangle(rect, nodes[i]); + } + + return rect; +}; diff --git a/test/spec/ol/structs/rtree.test.js b/test/spec/ol/structs/rtree.test.js index b2e774fcd5..f8fbb83e84 100644 --- a/test/spec/ol/structs/rtree.test.js +++ b/test/spec/ol/structs/rtree.test.js @@ -13,10 +13,7 @@ describe('ol.structs.RTree', function() { rTree.put([-3, -2, -3, -2], 6); it('stores items', function() { - expect(goog.object.getCount(rTree.find([ - Number.NEGATIVE_INFINITY, Number.POSITIVE_INFINITY, - Number.NEGATIVE_INFINITY, Number.POSITIVE_INFINITY - ]))).to.be(6); + expect(goog.object.getCount(rTree.find([-100, 100, -100, 100]))).to.be(6); }); it('filters by rectangle', function() {