diff --git a/src/ol/structs/rtree.js b/src/ol/structs/rtree.js index 948a8cd77c..1e188a2ce0 100644 --- a/src/ol/structs/rtree.js +++ b/src/ol/structs/rtree.js @@ -68,437 +68,6 @@ ol.structs.RTree = function(opt_maxWidth) { var rootTree = /** @type {ol.structs.RTreeNode} */ ({extent: [0, 0, 0, 0], nodes: []}); - /** - * Find the best specific node(s) for object to be deleted from. - * - * @param {ol.structs.RTreeNode} rect Rectangle. - * @param {Object} obj Object. - * @param {ol.structs.RTreeNode} root Root to start search. - * @return {Array} Leaf node parent. - */ - var removeSubtree = function(rect, obj, root) { - var hitStack = []; // Contains the elements that overlap - var countStack = []; // Contains the elements that overlap - var returnArray = []; - var currentDepth = 1; - - if (!rect || !ol.extent.intersects(rect.extent, root.extent)) { - return returnArray; - } - - /** @type {ol.structs.RTreeNode} */ - var workingObject = /** @type {ol.structs.RTreeNode} */ - ({extent: rect.extent.concat(), target: obj}); - - countStack.push(root.nodes.length); - hitStack.push(root); - - do { - var tree = hitStack.pop(); - var i = countStack.pop() - 1; - - if (goog.isDef(workingObject.target)) { - // We are searching for a target - while (i >= 0) { - var lTree = tree.nodes[i]; - if (ol.extent.intersects(workingObject.extent, lTree.extent)) { - if ((workingObject.target && goog.isDef(lTree.leaf) && - lTree.leaf === workingObject.target) || - (!workingObject.target && (goog.isDef(lTree.leaf) || - ol.extent.containsExtent(workingObject.extent, lTree.extent)))) - { // A Match !! - // Yup we found a match... - // we can cancel search and start walking up the list - if (goog.isDef(lTree.nodes)) { - // If we are deleting a node not a leaf... - returnArray = searchSubtree(lTree, true, [], lTree); - tree.nodes.splice(i, 1); - } else { - returnArray = tree.nodes.splice(i, 1); - } - // Resize MBR down... - ol.structs.RTree.makeMBR_(tree.nodes, tree); - workingObject.target = undefined; - if (tree.nodes.length < that.minWidth_) { // Underflow - workingObject.nodes = /** @type {Array} */ - (searchSubtree(tree, true, [], tree)); - } - break; - } else if (goog.isDef(lTree.nodes)) { - // Not a Leaf - currentDepth += 1; - countStack.push(i); - hitStack.push(tree); - tree = lTree; - i = lTree.nodes.length; - } - } - i -= 1; - } - } else if (goog.isDef(workingObject.nodes)) { - // We are unsplitting - tree.nodes.splice(i + 1, 1); // Remove unsplit node - // workingObject.nodes contains a list of elements removed from the - // tree so far - if (tree.nodes.length > 0) { - ol.structs.RTree.makeMBR_(tree.nodes, tree); - } - for (var t = 0, tt = workingObject.nodes.length; t < tt; ++t) { - insertSubtree(workingObject.nodes[t], tree); - } - workingObject.nodes.length = 0; - if (hitStack.length === 0 && tree.nodes.length <= 1) { - // Underflow..on root! - workingObject.nodes = /** @type {Array} */ - (searchSubtree(tree, true, workingObject.nodes, tree)); - tree.nodes.length = 0; - hitStack.push(tree); - countStack.push(1); - } else if (hitStack.length > 0 && tree.nodes.length < that.minWidth_) { - // Underflow..AGAIN! - workingObject.nodes = /** @type {Array} */ - (searchSubtree(tree, true, workingObject.nodes, tree)); - tree.nodes.length = 0; - } else { - workingObject.nodes = undefined; // Just start resizing - } - } else { // we are just resizing - ol.structs.RTree.makeMBR_(tree.nodes, tree); - } - currentDepth -= 1; - } while (hitStack.length > 0); - - return returnArray; - }; - - /** - * Choose the best damn node for rectangle to be inserted into. - * - * @param {ol.structs.RTreeNode} rect Rectangle. - * @param {ol.structs.RTreeNode} root Root to start search. - * @return {Array} Leaf node parent. - */ - var chooseLeafSubtree = function(rect, root) { - var bestChoiceIndex = -1; - var bestChoiceStack = []; - var bestChoiceArea; - - bestChoiceStack.push(root); - var nodes = root.nodes; - - do { - if (bestChoiceIndex != -1) { - bestChoiceStack.push(nodes[bestChoiceIndex]); - nodes = nodes[bestChoiceIndex].nodes; - bestChoiceIndex = -1; - } - - for (var i = nodes.length - 1; i >= 0; --i) { - var lTree = nodes[i]; - if (goog.isDef(lTree.leaf)) { - // Bail out of everything and start inserting - bestChoiceIndex = -1; - break; - } - // Area of new enlarged rectangle - var oldLRatio = ol.structs.RTree.squarifiedRatio_( - lTree.extent[1] - lTree.extent[0], - lTree.extent[3] - lTree.extent[2], - lTree.nodes.length + 1); - - // Enlarge rectangle to fit new rectangle - var nw = (lTree.extent[1] > rect.extent[1] ? - lTree.extent[1] : rect.extent[1]) - - (lTree.extent[0] < rect.extent[0] ? - lTree.extent[0] : rect.extent[0]); - var nh = (lTree.extent[3] > rect.extent[3] ? - lTree.extent[3] : rect.extent[3]) - - (lTree.extent[2] < rect.extent[2] ? - lTree.extent[2] : rect.extent[2]); - - // Area of new enlarged rectangle - var lRatio = ol.structs.RTree.squarifiedRatio_( - nw, nh, lTree.nodes.length + 2); - - if (bestChoiceIndex < 0 || - Math.abs(lRatio - oldLRatio) < bestChoiceArea) { - bestChoiceArea = Math.abs(lRatio - oldLRatio); - bestChoiceIndex = i; - } - } - } while (bestChoiceIndex != -1); - - return bestChoiceStack; - }; - - /** - * Split a set of nodes into two roughly equally-filled nodes. - * - * @param {Array.} nodes Array of nodes. - * @return {Array.>} An array of two new arrays - * of nodes. - */ - var linearSplit = function(nodes) { - var n = pickLinear(nodes); - while (nodes.length > 0) { - pickNext(nodes, n[0], n[1]); - } - return n; - }; - - /** - * Insert the best source rectangle into the best fitting parent node: a or b. - * - * @param {Array.} nodes Source node array. - * @param {ol.structs.RTreeNode} a Target node array a. - * @param {ol.structs.RTreeNode} b Target node array b. - */ - var pickNext = function(nodes, a, b) { - // Area of new enlarged rectangle - var areaA = ol.structs.RTree.squarifiedRatio_(a.extent[1] - a.extent[0], - a.extent[3] - a.extent[2], a.nodes.length + 1); - var areaB = ol.structs.RTree.squarifiedRatio_(b.extent[1] - b.extent[0], - b.extent[3] - b.extent[2], b.nodes.length + 1); - var highAreaDelta; - var highAreaNode; - var lowestGrowthGroup; - - for (var i = nodes.length - 1; i >= 0; --i) { - var l = nodes[i]; - - var newAreaA = [ - a.extent[0] < l.extent[0] ? a.extent[0] : l.extent[0], - a.extent[1] > l.extent[1] ? a.extent[1] : l.extent[1], - a.extent[2] < l.extent[2] ? a.extent[2] : l.extent[2], - a.extent[3] > l.extent[3] ? a.extent[3] : l.extent[3] - ]; - var changeNewAreaA = Math.abs(ol.structs.RTree.squarifiedRatio_( - newAreaA[1] - newAreaA[0], - newAreaA[3] - newAreaA[2], a.nodes.length + 2) - areaA); - - var newAreaB = [ - b.extent[0] < l.extent[0] ? b.extent[0] : l.extent[0], - b.extent[1] > l.extent[1] ? b.extent[1] : l.extent[1], - b.extent[2] < l.extent[2] ? b.extent[2] : l.extent[2], - b.extent[3] > l.extent[3] ? b.extent[3] : l.extent[3] - ]; - var changeNewAreaB = Math.abs(ol.structs.RTree.squarifiedRatio_( - newAreaB[1] - newAreaB[0], newAreaB[3] - newAreaB[2], - b.nodes.length + 2) - areaB); - - var changeNewAreaDelta = Math.abs(changeNewAreaB - changeNewAreaA); - if (!highAreaNode || !highAreaDelta || - changeNewAreaDelta < highAreaDelta) { - highAreaNode = i; - highAreaDelta = changeNewAreaDelta; - lowestGrowthGroup = changeNewAreaB < changeNewAreaA ? b : a; - } - } - var tempNode = nodes.splice(highAreaNode, 1)[0]; - if (a.nodes.length + nodes.length + 1 <= that.minWidth_) { - a.nodes.push(tempNode); - ol.extent.extend(a.extent, tempNode.extent); - } else if (b.nodes.length + nodes.length + 1 <= that.minWidth_) { - b.nodes.push(tempNode); - ol.extent.extend(b.extent, tempNode.extent); - } - else { - lowestGrowthGroup.nodes.push(tempNode); - ol.extent.extend(lowestGrowthGroup.extent, tempNode.extent); - } - }; - - /** - * Pick the "best" two starter nodes to use as seeds using the "linear" - * criteria. - * - * @param {Array.} nodes Array of source nodes. - * @return {Array.} An array of two new arrays - * of nodes. - */ - var pickLinear = function(nodes) { - var lowestHighX = nodes.length - 1; - var highestLowX = 0; - var lowestHighY = nodes.length - 1; - var highestLowY = 0; - var t1, t2; - - for (var i = nodes.length - 2; i >= 0; --i) { - var l = nodes[i]; - if (l.extent[0] > nodes[highestLowX].extent[0]) { - highestLowX = i; - } else if (l.extent[1] < nodes[lowestHighX].extent[2]) { - lowestHighX = i; - } - if (l.extent[2] > nodes[highestLowY].extent[2]) { - highestLowY = i; - } else if (l.extent[3] < nodes[lowestHighY].extent[3]) { - lowestHighY = i; - } - } - var dx = Math.abs(nodes[lowestHighX].extent[1] - - nodes[highestLowX].extent[0]); - var dy = Math.abs(nodes[lowestHighY].extent[3] - - nodes[highestLowY].extent[2]); - if (dx > dy) { - if (lowestHighX > highestLowX) { - t1 = nodes.splice(lowestHighX, 1)[0]; - t2 = nodes.splice(highestLowX, 1)[0]; - } else { - t2 = nodes.splice(highestLowX, 1)[0]; - t1 = nodes.splice(lowestHighX, 1)[0]; - } - } else { - if (lowestHighY > highestLowY) { - t1 = nodes.splice(lowestHighY, 1)[0]; - t2 = nodes.splice(highestLowY, 1)[0]; - } else { - t2 = nodes.splice(highestLowY, 1)[0]; - t1 = nodes.splice(lowestHighY, 1)[0]; - } - } - return [ - /** @type {ol.structs.RTreeNode} */ - ({extent: t1.extent.concat(), nodes: [t1]}), - /** @type {ol.structs.RTreeNode} */ - ({extent: t2.extent.concat(), nodes: [t2]}) - ]; - }; - - - /** - * Non-recursive internal search function - * - * @param {ol.structs.RTreeNode} rect Rectangle. - * @param {boolean} returnNode Do we return nodes? - * @param {Array|Object} result Result. - * @param {ol.structs.RTreeNode} root Root. - * @param {string=} opt_type Optional type to search for. - * @param {boolean=} opt_resultAsObject If set, result will be an object keyed - * by UID. - * @return {Array|Object} Result. - */ - var searchSubtree = function(rect, returnNode, result, root, opt_type, - opt_resultAsObject) { - var resultObject = {}; - var hitStack = []; // Contains the elements that overlap - - if (!ol.extent.intersects(rect.extent, root.extent)) { - return result; - } - - hitStack.push(root.nodes); - - do { - var nodes = hitStack.pop(); - - for (var i = nodes.length - 1; i >= 0; --i) { - var lTree = nodes[i]; - if (ol.extent.intersects(rect.extent, lTree.extent)) { - if (goog.isDef(lTree.nodes)) { // Not a Leaf - hitStack.push(lTree.nodes); - } else if (goog.isDef(lTree.leaf)) { // A Leaf !! - if (!returnNode) { - // TODO keep track of type on all nodes so we don't have to - // walk all the way in to the leaf to know that we don't need it - if (!goog.isDef(opt_type) || lTree.type == opt_type) { - var obj = lTree.leaf; - if (goog.isDef(opt_resultAsObject)) { - resultObject[goog.getUid(obj).toString()] = obj; - } else { - result.push(obj); - } - } - } else { - result.push(lTree); - } - } - } - } - } while (hitStack.length > 0); - - if (goog.isDef(opt_resultAsObject)) { - return resultObject; - } else { - return result; - } - }; - - /** - * Non-recursive internal insert function. - * - * @param {ol.structs.RTreeNode} node Node to insert. - * @param {ol.structs.RTreeNode} root Root to begin insertion at. - */ - var insertSubtree = function(node, root) { - var bc; // Best Current node - // Initial insertion is special because we resize the Tree and we don't - // care about any overflow (seriously, how can the first object overflow?) - if (root.nodes.length === 0) { - root.extent = node.extent.concat(); - root.nodes.push(node); - return; - } - - // Find the best fitting leaf node - // chooseLeaf returns an array of all tree levels (including root) - // that were traversed while trying to find the leaf - var treeStack = chooseLeafSubtree(node, root); - var workingObject = node; - - // Walk back up the tree resizing and inserting as needed - do { - //handle the case of an empty node (from a split) - if (bc && goog.isDef(bc.nodes) && bc.nodes.length === 0) { - var pbc = bc; // Past bc - bc = treeStack.pop(); - for (var t = 0, tt = bc.nodes.length; t < tt; ++t) { - if (bc.nodes[t] === pbc || bc.nodes[t].nodes.length === 0) { - bc.nodes.splice(t, 1); - break; - } - } - } else { - bc = treeStack.pop(); - } - - // If there is data attached to this workingObject - var isArray = goog.isArray(workingObject); - if (goog.isDef(workingObject.leaf) || - goog.isDef(workingObject.nodes) || isArray) { - // Do Insert - if (isArray) { - for (var ai = 0, aii = workingObject.length; ai < aii; ++ai) { - ol.extent.extend(bc.extent, workingObject[ai].extent); - } - bc.nodes = bc.nodes.concat(workingObject); - } else { - ol.extent.extend(bc.extent, workingObject.extent); - bc.nodes.push(workingObject); // Do Insert - } - - if (bc.nodes.length <= that.maxWidth_) { // Start Resizeing Up the Tree - workingObject = {extent: bc.extent.concat()}; - } else { // Otherwise Split this Node - // linearSplit() returns an array containing two new nodes - // formed from the split of the previous node's overflow - var a = linearSplit(bc.nodes); - workingObject = a;//[1]; - - if (treeStack.length < 1) { // If are splitting the root.. - bc.nodes.push(a[0]); - treeStack.push(bc); // Reconsider the root element - workingObject = a[1]; - } - } - } else { // Otherwise Do Resize - //Just keep applying the new bounding rectangle to the parents.. - ol.extent.extend(bc.extent, workingObject.extent); - workingObject = ({extent: bc.extent.concat()}); - } - } while (treeStack.length > 0); - }; - /** * Non-recursive search function * @@ -509,8 +78,8 @@ ol.structs.RTree = function(opt_maxWidth) { */ this.search = function(extent, opt_type) { var rect = /** @type {ol.structs.RTreeNode} */ ({extent: extent}); - return /** @type {Array} */ (searchSubtree.apply(this, [rect, false, [], - rootTree, opt_type])); + return /** @type {Array} */ (that.searchSubtree_.apply(this, + [rect, false, [], rootTree, opt_type])); }; /** @@ -523,8 +92,8 @@ ol.structs.RTree = function(opt_maxWidth) { */ this.searchReturningObject = function(extent, opt_type) { var rect = /** @type {ol.structs.RTreeNode} */ ({extent: extent}); - return /** @type {Object} */ (searchSubtree.apply(this, [rect, false, [], - rootTree, opt_type, true])); + return /** @type {Object} */ (that.searchSubtree_.apply(this, + [rect, false, [], rootTree, opt_type, true])); }; /** @@ -550,11 +119,11 @@ ol.structs.RTree = function(opt_maxWidth) { var result = []; do { numberDeleted = result.length; - result = result.concat(removeSubtree.apply(this, arguments)); + result = result.concat(this.removeSubtree_.apply(this, arguments)); } while (numberDeleted != result.length); return result; } else { // Delete a specific item - return removeSubtree.apply(this, arguments); + return this.removeSubtree_.apply(this, arguments); } }; @@ -571,7 +140,7 @@ ol.structs.RTree = function(opt_maxWidth) { if (goog.isDef(opt_type)) { node.type = opt_type; } - insertSubtree(node, rootTree); + that.insertSubtree_(node, rootTree); }; //End of RTree @@ -622,3 +191,447 @@ ol.structs.RTree.squarifiedRatio_ = function(l, w, fill) { var geo = area / (peri * peri); return area * fill / geo; }; + + +/** + * Choose the best damn node for rectangle to be inserted into. + * + * @param {ol.structs.RTreeNode} rect Rectangle. + * @param {ol.structs.RTreeNode} root Root to start search. + * @private + * @return {Array} Leaf node parent. + */ +ol.structs.RTree.prototype.chooseLeafSubtree_ = function(rect, root) { + var bestChoiceIndex = -1; + var bestChoiceStack = []; + var bestChoiceArea; + + bestChoiceStack.push(root); + var nodes = root.nodes; + + do { + if (bestChoiceIndex != -1) { + bestChoiceStack.push(nodes[bestChoiceIndex]); + nodes = nodes[bestChoiceIndex].nodes; + bestChoiceIndex = -1; + } + + for (var i = nodes.length - 1; i >= 0; --i) { + var lTree = nodes[i]; + if (goog.isDef(lTree.leaf)) { + // Bail out of everything and start inserting + bestChoiceIndex = -1; + break; + } + // Area of new enlarged rectangle + var oldLRatio = ol.structs.RTree.squarifiedRatio_( + lTree.extent[1] - lTree.extent[0], + lTree.extent[3] - lTree.extent[2], + lTree.nodes.length + 1); + + // Enlarge rectangle to fit new rectangle + var nw = (lTree.extent[1] > rect.extent[1] ? + lTree.extent[1] : rect.extent[1]) - + (lTree.extent[0] < rect.extent[0] ? + lTree.extent[0] : rect.extent[0]); + var nh = (lTree.extent[3] > rect.extent[3] ? + lTree.extent[3] : rect.extent[3]) - + (lTree.extent[2] < rect.extent[2] ? + lTree.extent[2] : rect.extent[2]); + + // Area of new enlarged rectangle + var lRatio = ol.structs.RTree.squarifiedRatio_( + nw, nh, lTree.nodes.length + 2); + + if (bestChoiceIndex < 0 || + Math.abs(lRatio - oldLRatio) < bestChoiceArea) { + bestChoiceArea = Math.abs(lRatio - oldLRatio); + bestChoiceIndex = i; + } + } + } while (bestChoiceIndex != -1); + + return bestChoiceStack; +}; + + +/** + * Non-recursive internal insert function. + * + * @param {ol.structs.RTreeNode} node Node to insert. + * @param {ol.structs.RTreeNode} root Root to begin insertion at. + * @private + */ +ol.structs.RTree.prototype.insertSubtree_ = function(node, root) { + var bc; // Best Current node + // Initial insertion is special because we resize the Tree and we don't + // care about any overflow (seriously, how can the first object overflow?) + if (root.nodes.length === 0) { + root.extent = node.extent.concat(); + root.nodes.push(node); + return; + } + + // Find the best fitting leaf node + // chooseLeaf returns an array of all tree levels (including root) + // that were traversed while trying to find the leaf + var treeStack = this.chooseLeafSubtree_(node, root); + var workingObject = node; + + // Walk back up the tree resizing and inserting as needed + do { + //handle the case of an empty node (from a split) + if (bc && goog.isDef(bc.nodes) && bc.nodes.length === 0) { + var pbc = bc; // Past bc + bc = treeStack.pop(); + for (var t = 0, tt = bc.nodes.length; t < tt; ++t) { + if (bc.nodes[t] === pbc || bc.nodes[t].nodes.length === 0) { + bc.nodes.splice(t, 1); + break; + } + } + } else { + bc = treeStack.pop(); + } + + // If there is data attached to this workingObject + var isArray = goog.isArray(workingObject); + if (goog.isDef(workingObject.leaf) || + goog.isDef(workingObject.nodes) || isArray) { + // Do Insert + if (isArray) { + for (var ai = 0, aii = workingObject.length; ai < aii; ++ai) { + ol.extent.extend(bc.extent, workingObject[ai].extent); + } + bc.nodes = bc.nodes.concat(workingObject); + } else { + ol.extent.extend(bc.extent, workingObject.extent); + bc.nodes.push(workingObject); // Do Insert + } + + if (bc.nodes.length <= this.maxWidth_) { // Start Resizeing Up the Tree + workingObject = {extent: bc.extent.concat()}; + } else { // Otherwise Split this Node + // linearSplit_() returns an array containing two new nodes + // formed from the split of the previous node's overflow + var a = this.linearSplit_(bc.nodes); + workingObject = a;//[1]; + + if (treeStack.length < 1) { // If are splitting the root.. + bc.nodes.push(a[0]); + treeStack.push(bc); // Reconsider the root element + workingObject = a[1]; + } + } + } else { // Otherwise Do Resize + //Just keep applying the new bounding rectangle to the parents.. + ol.extent.extend(bc.extent, workingObject.extent); + workingObject = ({extent: bc.extent.concat()}); + } + } while (treeStack.length > 0); +}; + + +/** + * Pick the "best" two starter nodes to use as seeds using the "linear" + * criteria. + * + * @param {Array.} nodes Array of source nodes. + * @private + * @return {Array.} An array of two new arrays + * of nodes. + */ +ol.structs.RTree.prototype.pickLinear_ = function(nodes) { + var lowestHighX = nodes.length - 1; + var highestLowX = 0; + var lowestHighY = nodes.length - 1; + var highestLowY = 0; + var t1, t2; + + for (var i = nodes.length - 2; i >= 0; --i) { + var l = nodes[i]; + if (l.extent[0] > nodes[highestLowX].extent[0]) { + highestLowX = i; + } else if (l.extent[1] < nodes[lowestHighX].extent[2]) { + lowestHighX = i; + } + if (l.extent[2] > nodes[highestLowY].extent[2]) { + highestLowY = i; + } else if (l.extent[3] < nodes[lowestHighY].extent[3]) { + lowestHighY = i; + } + } + var dx = Math.abs(nodes[lowestHighX].extent[1] - + nodes[highestLowX].extent[0]); + var dy = Math.abs(nodes[lowestHighY].extent[3] - + nodes[highestLowY].extent[2]); + if (dx > dy) { + if (lowestHighX > highestLowX) { + t1 = nodes.splice(lowestHighX, 1)[0]; + t2 = nodes.splice(highestLowX, 1)[0]; + } else { + t2 = nodes.splice(highestLowX, 1)[0]; + t1 = nodes.splice(lowestHighX, 1)[0]; + } + } else { + if (lowestHighY > highestLowY) { + t1 = nodes.splice(lowestHighY, 1)[0]; + t2 = nodes.splice(highestLowY, 1)[0]; + } else { + t2 = nodes.splice(highestLowY, 1)[0]; + t1 = nodes.splice(lowestHighY, 1)[0]; + } + } + return [ + /** @type {ol.structs.RTreeNode} */ + ({extent: t1.extent.concat(), nodes: [t1]}), + /** @type {ol.structs.RTreeNode} */ + ({extent: t2.extent.concat(), nodes: [t2]}) + ]; +}; + + +/** + * Insert the best source rectangle into the best fitting parent node: a or b. + * + * @param {Array.} nodes Source node array. + * @param {ol.structs.RTreeNode} a Target node array a. + * @param {ol.structs.RTreeNode} b Target node array b. + * @private + */ +ol.structs.RTree.prototype.pickNext_ = function(nodes, a, b) { + // Area of new enlarged rectangle + var areaA = ol.structs.RTree.squarifiedRatio_(a.extent[1] - a.extent[0], + a.extent[3] - a.extent[2], a.nodes.length + 1); + var areaB = ol.structs.RTree.squarifiedRatio_(b.extent[1] - b.extent[0], + b.extent[3] - b.extent[2], b.nodes.length + 1); + var highAreaDelta; + var highAreaNode; + var lowestGrowthGroup; + + for (var i = nodes.length - 1; i >= 0; --i) { + var l = nodes[i]; + + var newAreaA = [ + a.extent[0] < l.extent[0] ? a.extent[0] : l.extent[0], + a.extent[1] > l.extent[1] ? a.extent[1] : l.extent[1], + a.extent[2] < l.extent[2] ? a.extent[2] : l.extent[2], + a.extent[3] > l.extent[3] ? a.extent[3] : l.extent[3] + ]; + var changeNewAreaA = Math.abs(ol.structs.RTree.squarifiedRatio_( + newAreaA[1] - newAreaA[0], + newAreaA[3] - newAreaA[2], a.nodes.length + 2) - areaA); + + var newAreaB = [ + b.extent[0] < l.extent[0] ? b.extent[0] : l.extent[0], + b.extent[1] > l.extent[1] ? b.extent[1] : l.extent[1], + b.extent[2] < l.extent[2] ? b.extent[2] : l.extent[2], + b.extent[3] > l.extent[3] ? b.extent[3] : l.extent[3] + ]; + var changeNewAreaB = Math.abs(ol.structs.RTree.squarifiedRatio_( + newAreaB[1] - newAreaB[0], newAreaB[3] - newAreaB[2], + b.nodes.length + 2) - areaB); + + var changeNewAreaDelta = Math.abs(changeNewAreaB - changeNewAreaA); + if (!highAreaNode || !highAreaDelta || + changeNewAreaDelta < highAreaDelta) { + highAreaNode = i; + highAreaDelta = changeNewAreaDelta; + lowestGrowthGroup = changeNewAreaB < changeNewAreaA ? b : a; + } + } + var tempNode = nodes.splice(highAreaNode, 1)[0]; + if (a.nodes.length + nodes.length + 1 <= this.minWidth_) { + a.nodes.push(tempNode); + ol.extent.extend(a.extent, tempNode.extent); + } else if (b.nodes.length + nodes.length + 1 <= this.minWidth_) { + b.nodes.push(tempNode); + ol.extent.extend(b.extent, tempNode.extent); + } + else { + lowestGrowthGroup.nodes.push(tempNode); + ol.extent.extend(lowestGrowthGroup.extent, tempNode.extent); + } +}; + + +/** + * Find the best specific node(s) for object to be deleted from. + * + * @param {ol.structs.RTreeNode} rect Rectangle. + * @param {Object} obj Object. + * @param {ol.structs.RTreeNode} root Root to start search. + * @private + * @return {Array} Leaf node parent. + */ +ol.structs.RTree.prototype.removeSubtree_ = function(rect, obj, root) { + var hitStack = []; // Contains the elements that overlap + var countStack = []; // Contains the elements that overlap + var returnArray = []; + var currentDepth = 1; + + if (!rect || !ol.extent.intersects(rect.extent, root.extent)) { + return returnArray; + } + + /** @type {ol.structs.RTreeNode} */ + var workingObject = /** @type {ol.structs.RTreeNode} */ + ({extent: rect.extent.concat(), target: obj}); + + countStack.push(root.nodes.length); + hitStack.push(root); + + do { + var tree = hitStack.pop(); + var i = countStack.pop() - 1; + + if (goog.isDef(workingObject.target)) { + // We are searching for a target + while (i >= 0) { + var lTree = tree.nodes[i]; + if (ol.extent.intersects(workingObject.extent, lTree.extent)) { + if ((workingObject.target && goog.isDef(lTree.leaf) && + lTree.leaf === workingObject.target) || + (!workingObject.target && (goog.isDef(lTree.leaf) || + ol.extent.containsExtent(workingObject.extent, lTree.extent)))) + { // A Match !! + // Yup we found a match... + // we can cancel search and start walking up the list + if (goog.isDef(lTree.nodes)) { + // If we are deleting a node not a leaf... + returnArray = this.searchSubtree_(lTree, true, [], lTree); + tree.nodes.splice(i, 1); + } else { + returnArray = tree.nodes.splice(i, 1); + } + // Resize MBR down... + ol.structs.RTree.makeMBR_(tree.nodes, tree); + workingObject.target = undefined; + if (tree.nodes.length < this.minWidth_) { // Underflow + workingObject.nodes = /** @type {Array} */ + (this.searchSubtree_(tree, true, [], tree)); + } + break; + } else if (goog.isDef(lTree.nodes)) { + // Not a Leaf + currentDepth += 1; + countStack.push(i); + hitStack.push(tree); + tree = lTree; + i = lTree.nodes.length; + } + } + i -= 1; + } + } else if (goog.isDef(workingObject.nodes)) { + // We are unsplitting + tree.nodes.splice(i + 1, 1); // Remove unsplit node + // workingObject.nodes contains a list of elements removed from the + // tree so far + if (tree.nodes.length > 0) { + ol.structs.RTree.makeMBR_(tree.nodes, tree); + } + for (var t = 0, tt = workingObject.nodes.length; t < tt; ++t) { + this.insertSubtree_(workingObject.nodes[t], tree); + } + workingObject.nodes.length = 0; + if (hitStack.length === 0 && tree.nodes.length <= 1) { + // Underflow..on root! + workingObject.nodes = /** @type {Array} */ + (this.searchSubtree_(tree, true, workingObject.nodes, tree)); + tree.nodes.length = 0; + hitStack.push(tree); + countStack.push(1); + } else if (hitStack.length > 0 && tree.nodes.length < this.minWidth_) { + // Underflow..AGAIN! + workingObject.nodes = /** @type {Array} */ + (this.searchSubtree_(tree, true, workingObject.nodes, tree)); + tree.nodes.length = 0; + } else { + workingObject.nodes = undefined; // Just start resizing + } + } else { // we are just resizing + ol.structs.RTree.makeMBR_(tree.nodes, tree); + } + currentDepth -= 1; + } while (hitStack.length > 0); + + return returnArray; +}; + + +/** + * Split a set of nodes into two roughly equally-filled nodes. + * + * @param {Array.} nodes Array of nodes. + * @private + * @return {Array.>} An array of two new arrays + * of nodes. + */ +ol.structs.RTree.prototype.linearSplit_ = function(nodes) { + var n = this.pickLinear_(nodes); + while (nodes.length > 0) { + this.pickNext_(nodes, n[0], n[1]); + } + return n; +}; + + +/** + * Non-recursive internal search function + * + * @param {ol.structs.RTreeNode} rect Rectangle. + * @param {boolean} returnNode Do we return nodes? + * @param {Array|Object} result Result. + * @param {ol.structs.RTreeNode} root Root. + * @param {string=} opt_type Optional type to search for. + * @param {boolean=} opt_resultAsObject If set, result will be an object keyed + * by UID. + * @private + * @return {Array|Object} Result. + */ +ol.structs.RTree.prototype.searchSubtree_ = function( + rect, returnNode, result, root, opt_type, opt_resultAsObject) { + var resultObject = {}; + var hitStack = []; // Contains the elements that overlap + + if (!ol.extent.intersects(rect.extent, root.extent)) { + return result; + } + + hitStack.push(root.nodes); + + do { + var nodes = hitStack.pop(); + + for (var i = nodes.length - 1; i >= 0; --i) { + var lTree = nodes[i]; + if (ol.extent.intersects(rect.extent, lTree.extent)) { + if (goog.isDef(lTree.nodes)) { // Not a Leaf + hitStack.push(lTree.nodes); + } else if (goog.isDef(lTree.leaf)) { // A Leaf !! + if (!returnNode) { + // TODO keep track of type on all nodes so we don't have to + // walk all the way in to the leaf to know that we don't need it + if (!goog.isDef(opt_type) || lTree.type == opt_type) { + var obj = lTree.leaf; + if (goog.isDef(opt_resultAsObject)) { + resultObject[goog.getUid(obj).toString()] = obj; + } else { + result.push(obj); + } + } + } else { + result.push(lTree); + } + } + } + } + } while (hitStack.length > 0); + + if (goog.isDef(opt_resultAsObject)) { + return resultObject; + } else { + return result; + } +};