Update wmts-hidpi, add nicer-api-docs
This commit is contained in:
73
nicer-api-docs/closure-library/closure/goog/math/tdma.js
Normal file
73
nicer-api-docs/closure-library/closure/goog/math/tdma.js
Normal file
@@ -0,0 +1,73 @@
|
||||
// Copyright 2011 The Closure Library Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS-IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
/**
|
||||
* @fileoverview The Tridiagonal matrix algorithm solver solves a special
|
||||
* version of a sparse linear system Ax = b where A is tridiagonal.
|
||||
*
|
||||
* See http://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm
|
||||
*
|
||||
*/
|
||||
|
||||
goog.provide('goog.math.tdma');
|
||||
|
||||
|
||||
/**
|
||||
* Solves a linear system where the matrix is square tri-diagonal. That is,
|
||||
* given a system of equations:
|
||||
*
|
||||
* A * result = vecRight,
|
||||
*
|
||||
* this class computes result = inv(A) * vecRight, where A has the special form
|
||||
* of a tri-diagonal matrix:
|
||||
*
|
||||
* |dia(0) sup(0) 0 0 ... 0|
|
||||
* |sub(0) dia(1) sup(1) 0 ... 0|
|
||||
* A =| ... |
|
||||
* |0 ... 0 sub(n-2) dia(n-1) sup(n-1)|
|
||||
* |0 ... 0 0 sub(n-1) dia(n)|
|
||||
*
|
||||
* @param {!Array.<number>} subDiag The sub diagonal of the matrix.
|
||||
* @param {!Array.<number>} mainDiag The main diagonal of the matrix.
|
||||
* @param {!Array.<number>} supDiag The super diagonal of the matrix.
|
||||
* @param {!Array.<number>} vecRight The right vector of the system
|
||||
* of equations.
|
||||
* @param {Array.<number>=} opt_result The optional array to store the result.
|
||||
* @return {!Array.<number>} The vector that is the solution to the system.
|
||||
*/
|
||||
goog.math.tdma.solve = function(
|
||||
subDiag, mainDiag, supDiag, vecRight, opt_result) {
|
||||
// Make a local copy of the main diagonal and the right vector.
|
||||
mainDiag = mainDiag.slice();
|
||||
vecRight = vecRight.slice();
|
||||
|
||||
// The dimension of the matrix.
|
||||
var nDim = mainDiag.length;
|
||||
|
||||
// Construct a modified linear system of equations with the same solution
|
||||
// as the input one.
|
||||
for (var i = 1; i < nDim; ++i) {
|
||||
var m = subDiag[i - 1] / mainDiag[i - 1];
|
||||
mainDiag[i] = mainDiag[i] - m * supDiag[i - 1];
|
||||
vecRight[i] = vecRight[i] - m * vecRight[i - 1];
|
||||
}
|
||||
|
||||
// Solve the new system of equations by simple back-substitution.
|
||||
var result = opt_result || new Array(vecRight.length);
|
||||
result[nDim - 1] = vecRight[nDim - 1] / mainDiag[nDim - 1];
|
||||
for (i = nDim - 2; i >= 0; --i) {
|
||||
result[i] = (vecRight[i] - supDiag[i] * result[i + 1]) / mainDiag[i];
|
||||
}
|
||||
return result;
|
||||
};
|
||||
Reference in New Issue
Block a user