Update wmts-hidpi, add nicer-api-docs
This commit is contained in:
@@ -0,0 +1,81 @@
|
||||
// Copyright 2012 The Closure Library Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS-IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
/**
|
||||
* @fileoverview A one dimensional monotone cubic spline interpolator.
|
||||
*
|
||||
* See http://en.wikipedia.org/wiki/Monotone_cubic_interpolation.
|
||||
*
|
||||
*/
|
||||
|
||||
goog.provide('goog.math.interpolator.Pchip1');
|
||||
|
||||
goog.require('goog.math');
|
||||
goog.require('goog.math.interpolator.Spline1');
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* A one dimensional monotone cubic spline interpolator.
|
||||
* @extends {goog.math.interpolator.Spline1}
|
||||
* @constructor
|
||||
*/
|
||||
goog.math.interpolator.Pchip1 = function() {
|
||||
goog.base(this);
|
||||
};
|
||||
goog.inherits(goog.math.interpolator.Pchip1, goog.math.interpolator.Spline1);
|
||||
|
||||
|
||||
/** @override */
|
||||
goog.math.interpolator.Pchip1.prototype.computeDerivatives = function(
|
||||
dx, slope) {
|
||||
var len = dx.length;
|
||||
var deriv = new Array(len + 1);
|
||||
for (var i = 1; i < len; ++i) {
|
||||
if (goog.math.sign(slope[i - 1]) * goog.math.sign(slope[i]) <= 0) {
|
||||
deriv[i] = 0;
|
||||
} else {
|
||||
var w1 = 2 * dx[i] + dx[i - 1];
|
||||
var w2 = dx[i] + 2 * dx[i - 1];
|
||||
deriv[i] = (w1 + w2) / (w1 / slope[i - 1] + w2 / slope[i]);
|
||||
}
|
||||
}
|
||||
deriv[0] = this.computeDerivativeAtBoundary_(
|
||||
dx[0], dx[1], slope[0], slope[1]);
|
||||
deriv[len] = this.computeDerivativeAtBoundary_(
|
||||
dx[len - 1], dx[len - 2], slope[len - 1], slope[len - 2]);
|
||||
return deriv;
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Computes the derivative of a data point at a boundary.
|
||||
* @param {number} dx0 The spacing of the 1st data point.
|
||||
* @param {number} dx1 The spacing of the 2nd data point.
|
||||
* @param {number} slope0 The slope of the 1st data point.
|
||||
* @param {number} slope1 The slope of the 2nd data point.
|
||||
* @return {number} The derivative at the 1st data point.
|
||||
* @private
|
||||
*/
|
||||
goog.math.interpolator.Pchip1.prototype.computeDerivativeAtBoundary_ = function(
|
||||
dx0, dx1, slope0, slope1) {
|
||||
var deriv = ((2 * dx0 + dx1) * slope0 - dx0 * slope1) / (dx0 + dx1);
|
||||
if (goog.math.sign(deriv) != goog.math.sign(slope0)) {
|
||||
deriv = 0;
|
||||
} else if (goog.math.sign(slope0) != goog.math.sign(slope1) &&
|
||||
Math.abs(deriv) > Math.abs(3 * slope0)) {
|
||||
deriv = 3 * slope0;
|
||||
}
|
||||
return deriv;
|
||||
};
|
||||
Reference in New Issue
Block a user