Move ol.Sphere#circle to ol.geom.Polygon.circular
Previously, ol.geom.Polygon was a transitive dependency of ol.proj (since ol.proj requires ol.sphere.NORMAL, and all spheres were capable of generating circular polygons). Instead, ol.proj should be lower-level. Since it deals only with coordinate arrays, it shouldn't depend on all of the geometry code. By adding a static `circular` function to `ol.geom.Polygon`, the dependency tree makes more sense. If you want to create a polygon that approximates a circle on a sphere, you require `ol.geom.Polygon` and `ol.Sphere` (or one of the constants). This makes room for geometries to have a `transform` method that takes projection-like arguments (meaning that `ol.geom.Geometry` will require `ol.proj`).
This commit is contained in:
@@ -12,7 +12,6 @@ goog.provide('ol.Sphere');
|
||||
|
||||
goog.require('goog.array');
|
||||
goog.require('goog.math');
|
||||
goog.require('ol.geom.Polygon');
|
||||
|
||||
|
||||
|
||||
@@ -30,33 +29,6 @@ ol.Sphere = function(radius) {
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Returns an approximation to a circle centered on `center` with radius
|
||||
* `radius` with `n` distinct points.
|
||||
*
|
||||
* @param {ol.Coordinate} center Center.
|
||||
* @param {number} radius Radius.
|
||||
* @param {number=} opt_n N.
|
||||
* @return {ol.geom.Geometry} Circle geometry.
|
||||
* @todo api
|
||||
*/
|
||||
ol.Sphere.prototype.circle = function(center, radius, opt_n) {
|
||||
var n = goog.isDef(opt_n) ? opt_n : 32;
|
||||
/** @type {Array.<number>} */
|
||||
var flatCoordinates = [];
|
||||
var i;
|
||||
for (i = 0; i < n; ++i) {
|
||||
goog.array.extend(
|
||||
flatCoordinates, this.offset(center, radius, 2 * Math.PI * i / n));
|
||||
}
|
||||
flatCoordinates.push(flatCoordinates[0], flatCoordinates[1]);
|
||||
var polygon = new ol.geom.Polygon(null);
|
||||
polygon.setFlatCoordinates(
|
||||
ol.geom.GeometryLayout.XY, flatCoordinates, [flatCoordinates.length]);
|
||||
return polygon;
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Returns the distance from c1 to c2 using the spherical law of cosines.
|
||||
*
|
||||
|
||||
Reference in New Issue
Block a user